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Abstract—A deep learning enhanced framework is proposed to
jointly invert the crosswell DC resistivity and seismic travel time
data. With the strong capability to extract the implicit patterns
of the input data, our deep neural network is trained to fuse and
extract the connections between separately inverted resistivity
and velocity models by the conventional methods, while the
structural similarity is imposed by letting the outputs of network
approach the true resistivity and velocity models with the same
structures. In the joint inversion framework, the well-trained
network is adopted in an iterative way to generate the enhanced
resistivity and velocity models to perform as the inputs for next
round of inversion. Moreover, under our framework, multiple
geophysical data can be used simultaneously to jointly invert
the corresponding multiple properties. Numerical simulation
demonstrates an improved accuracy of our method.

I. INTRODUCTION

A geological formation can be sensed by multiple mea-
suring methods with different sensitivities to the geophysi-
cal properties. These methods have different resolutions and
their own advantages in dealing with specific formations. For
example, electromagnetic (EM) data are better at describing
the boundary between hydrocarbons and water, while seismic

data prevail when distinguishing gas-bearing from oil-bearing
layers [1]. Jointly inverting two or multiple complementary
data can further facilitate each of the separate inversion,
providing the potential to achieve a higher accuracy. Currently,
two technology categories are available for joint inversion:
petrophysical relationship [2] and structural similarity [3]. Tak-
ing integrating electromagnetic and seismic data to invert the
resistivity and seismic velocity as an example, methods based
on petrophysical relationship suffers from the complicated and
non-unique relationships between resistivity/velocity and the
petrophysical properties, e.g., porosity and fluid saturation.
Methods based on structural similarity of the velocity and
resistivity profiles are attractive because it is a generalized
quantitative criterion, but there are still a lot of other informa-
tion such as amplitude that are not taken into consideration.
In recent years, deep learning techniques have been applied
to solve inverse problems for single type of data and have
achieved considerable results [4]. In this paper, we propose
a flexible deep learning enhanced framework to improve the
accuracy of joint inversion for DC resistivity and seismic data.
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Fig. 1. The flowchart of the deep learning enhanced joint inversion framework.
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II. DEEP LEARNING ENHANCED JOINT INVERSION

The basic idea of our deep learning enhanced joint inversion
framework is to utilize the network to extract the implicit
connections between different geophysical data instead of
deterministic formulation. After the network is well-trained,
it will be combined with the traditional inversion workflow to
achieve a higher accuracy.

A. Training process

Different from the conventional end-to-end network, we
adopt the separately inverted resistivity and velocity models
instead of the data as the inputs and let the outputs approach
the true resistivity and velocity respectively. This endows
the network the ability to extract not only the amplitude
relationship between the resistivity and velocity, but also
the complementary structure information, as well as other
geophysical patterns that can not be described in rigorous
forms. This is a more direct way to capture the connection of
the insights into different physics by combining the network
with the traditional separate inversions (by taking the inversion
results as the inputs of the network) during the training
process. Please be noted that this architecture can be extended
to jointly invert multiple geophysical data. Accordingly, in the
training process, the multiple inverted properties will make
up a multi-channel data cube performing as the input of the
network.

B. Joint inversion framework

The joint inversion flowchart embedded with the well-
trained network is shown in Fig. 1. The left and right parts
are separated conventional inversions with respect to EM data
and seismic data. Each inversion starts with the corresponding
observed data, the initial guess, and other prior information. In
each iteration, if the conditions for stopping the loop are not
met, the individually inverted EM model and seismic model
will be inputted into the network and get improved into the
updated models. Then the updated models will perform as
the inputs for the next iteration. Please be noted that the
“iteration” here can be a complete traditional inversion or an
actual iteration inside an inversion.

III. EXPERIMENTS

Here we use the joint inversion of the crosswell DC resistiv-
ity data and seismic travel time as the example to demonstrate
the effectiveness of our proposed framework and the results
are shown in Fig. 2. two boreholes separated by a distance of
20m, with depth ranging from 0 ∼ −40m, is considered. For
the DC resistivity survey, we adopt a bipole-bipole AM-BN
array, i.e., the current electrodes A and B are distributed inside
one of the boreholes and the potential electrodes M and N are
insider the other borehole. In each borehole, the electrodes
have a take-out of 4 m and the spacing is also 4 m, so there
are totally 81 measurements. Similarly, for the seismic survey,
the sources and receivers with distance of 2m respectively
are in different boreholes and the number of measurements is
400. The inversion domain is divided into 1m×1m cells. Our

preliminary results are given in Fig. 2. Fig. 2(a) and Fig. 2(d)
are the true models to generates the observed data. Fig. 2(b)
and Fig. 2(e) are the separate inversion results. Fig. 2(c) and
Fig. 2(f) are the joint inversion results. In this experiment, the
initial model is the uniform background and each “iteration”
is an entire inversion. A significant improvement of both the
reconstructed resistivity and velocity is achieved with our deep
learning enhanced framework.
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Fig. 2. Demonstration of the joint inversion results. (a) and (d) are the true
models. (b) and (e) are the separately inverted models, (c) and (f) are the
jointly inverted models.

IV. CONCLUSION

In this work, we proposed a deep learning enhanced frame-
work for joint inversion of crosswell DC resistivity and seismic
data. This framework uses a deep neural network to fuse
and extract the amplitude and structure information from
different physics, building up the inherent connections that
are difficult to describe in rigorous forms. Moreover, this
framework is flexible to jointly invert multiple geophysical
data. Preliminary results show a promising performance of the
proposed framework. Further exploration is underway.
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