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Abstract—A simple method for approximate pattern synthesis
is described. This method is applicable to arrays of any geometry
and employing any element pattern, including non-uniformly
spaced arrays, volumetric arrays, and arrays consisting of
elements having significantly unequal embedded patterns, as is
common in the presence of strong mutual coupling.

I. INTRODUCTION

Pattern synthesis is the problem of identifying element

excitations that result in an array pattern that is as close

as possible in some sense to a specified pattern. Pattern

synthesis methods for certain classes of arrays (e.g., uniform

linear arrays of isotropic elements) producing certain types of

patterns (e.g., beams with specified sidelobe characteristics)

are well-known; see e.g., [1] (Sec. 10.1).

However, a general method yielding an exact solution is not

available since any particular array is limited in the patterns

that can be supported. For example, a uniform linear array

consisting of a finite number of isotropic elements cannot

normally generate a beam with lobe width less than a threshold

determined by its length, nor can it generate a sector beam

having exactly uniform directivity over a specified angular

span. Approximate solutions are possible using the Fourier

transform relationship between element excitations and array

patterns; see e.g. [1] (Sec. 10.2). However traditional Fourier

transform methods are not directly applicable to arrays having

irregular spacings, volumetric arrays, or arrays of elements

having unequal embedded patterns, as is common in the

presence of strong mutual coupling.

This paper describes a simple approximate method of pat-

tern synthesis that is applicable in these cases.

II. METHOD

The pattern of an N -element array is given by

F (r̂) =
N
∑

n=1

bnFn(r̂)e
+jβPn·r̂ (1)

where Pn, Fn(r̂), and bn are the position, pattern, and exci-

tation, respectively, of element n; β is the phase propagation

constant 2π/λ where λ is wavelength; and r̂ is the unit vector

pointing from the origin in the direction (θ, φ); i.e.,

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (2)

Let G(r̂) be the specified pattern, so ideally F (r̂) = G(r̂).
Since equivalence is generally not possible, we instead reduce

this equality to N linear equations that can be solved for the

bn’s. Each equation is formed by multiplying both sides by

(

Fm(r̂)e+jβPm·r̂
)∗

(3)

where the superscript “∗” denotes the complex conjugate,

and m = 1...N . We then integrate both sides over a sphere

surrounding the array. In lieu of G(r̂), we obtain:

cm =

∮

G(r̂)F ∗

m(r̂)e−jβPm·r̂ dΩ (4)

where the integration is over a closed sphere bounding the

array, and dΩ = sin θ dθ dφ. In lieu of F (r̂), we obtain:
∮

F (r̂)F ∗

m(r̂)e−jβPm·r̂ dΩ (5)

After substituting Equation 1 and rearranging factors, we

obtain
N
∑

n=1

bnAmn = cm (6)

where

Amn =

∮

Fn(r̂)F
∗

m(r̂)e+jβ(Pn−Pm)·r̂ dΩ (7)

This yields a system of N equations which may be written

compactly as follows:

Ab = c (8)

where A is the N×N matrix of Amn’s, b is the N×1 matrix

of bn’s, and c is the N × 1 matrix of cm’s. Thus, the desired

excitations are given by

b = A−1c (9)

In this framework, A serves as a compact description of

the array and can be pre-computed, c can be interpreted as

the correlation between the specified array pattern and that of

each element of the array, and A−1c can be interpreted as a

projection of a compact representation of the specified pattern

onto the space of similarly-represented patterns that can be

supported by the array.

It should be noted that the method is not minimizing the

difference between F (r̂) and G(r̂) in any particular sense. On

the other hand, the method is deterministic (an iterative search

is not required) and, as shown in the next section, useful results

are possible.
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III. DEMONSTRATION

To demonstrate the method, consider the N = 17 element

array shown in Figure 1. Each arm of the array is oriented

30◦ from the y axis. Element spacings increase linearly from

0.4λ around the center to 1.2λ at the ends. The pattern of

element n in direction r̂ is r̂ · r̂n when this quantity is positive,

and zero otherwise, yielding a single-lobe cosine pattern. The

element pointing directions r̂n vary linearly from broadside

(+x̂) for the center element to (x̂ ± ŷ)/
√
2 for the ±y arms

of the array, respectively. This non-uniformity in geometry and

element patterns is sufficient to defeat most commonly-cited

methods for pattern synthesis.
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Fig. 1. Array geometry. Elements lie entirely in this (z = 0) plane. φ = 0

(i.e., x̂) is to the right and increases counterclockwise. See text for element
patterns.

Figure 2 shows the results when the specified pattern G(r̂)
is the impulse function δ(r̂− r̂0) defined as follows:

δ(r̂− r̂0) = 0, r̂ 6= r̂0 (10)

∮

δ(r̂− r̂0)dΩ = 1 (11)

In this example, r̂0 points to (θ0, φ0) = (90◦,+15◦), which

should result in a narrow beam in this direction and low

sidelobes elsewhere. Shown for comparison is unconstrained

“phase-only” beamforming; i.e.,

bn = e−jβPn·r̂0 (12)

As expected, the patterns are essentially identical around the

main lobe and are qualitatively similar elsewhere.

Figure 3 shows the results when the specified pattern G(r̂)
is a “sector beam” equal to 1 for 0 ≤ φ ≤ 30◦ and zero

otherwise. The method produces a reasonable approximation

to the specified pattern. A significantly better approximation

would require a larger array.
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Fig. 2. Pattern from (blue) the proposed method for the “impulse beam”
specification and (red) unconstrained “phase-only” beamforming. θ = π/2
plane.
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Fig. 3. Pattern from (blue) proposed method and (red) sector beam
specification. θ = π/2 plane.

IV. DISCUSSION

Since this method imposes no explicit constraints on the

pattern, and does not aim to minimize pattern error in any

particular sense, reasonable results are not guaranteed. How-

ever it is worth noting that the form of the linear system

of equations (Equation 8) makes it simple to add discrete

magnitude constraints or derivative constraints (see e.g. [2])

on the pattern. In this case the system will be over-determined,

so the additional constraints may not be exactly satisfied.

Nevertheless, this could be used as a means to coax the method

into delivering a pattern that is closer to that intended.
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