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Abstract— Modeling the interaction between coherent whistler 

mode waves and radiation belt electrons is an important 

component of space weather dynamics. Two main aspects of the 

wave-particle interaction are, the amplification of coherent VLF 

waves by an unstable radiation belt electron distribution and the 

precipitation and/or acceleration of these particles by the waves. 

The solution of the full problem requires a numerical self-

consistent code which captures both effects simultaneously. 

Unfortunately, self-consistent codes of nonlinear phenomena are 

computationally intensive and the results can be challenging to 

interpret. To quantify the effect of waves on particles, we employ 

a novel approach wherein the particle trajectories are traced 

backward in time. The validity of this method is based on 

conservation of phase space density formalized in Liouville's 

theorem. The model resolves in high resolution the formation of a 

depletion in the region of phase-space known as a phase space hole 

that is associated with nonlinear wave growth.  

I. INTRODUCTION 

Plasma waves in the magnetosphere play an important role 
in the dynamic of the Earth’s radiation belts. The interaction 
between these waves and geomagnetically-trapped energetic 
electrons is a key process in this region. Two main aspects of the 
wave-particle interaction are, the amplification of the wave by 
an unstable radiation belt electron distribution [1] and the 
precipitation and/or acceleration of these particles by the waves 
[2]. The most fundamental physical description of the 
interaction requires correctly modeling wave amplification 
while self-consistently capturing the evolution of the particle 
distribution in phase space ( 𝑟, �⃗� ). The full treatment of 
amplification and scattering/acceleration is a difficult problem 
that requires solving Vlasov-Maxwell system of equations. 
Several authors have used Vlasov-Maxwell solvers to model 
wave growth [3]; however, measuring particle distribution in the 
same numerical model can be difficult to do accurately. To 
quantify time evolution of the particle distribution, many authors 
considered simplified “no feedback” models where the waves 
are assumed to be generated by transmitters or lightning [2]. A 
common method of evaluating the particle distribution is 
through quasi-linear theory and the calculation of diffusion 
coefficients [4]. However, the primary disadvantage is that it is 
formally valid only for small amplitude, incoherent signals. 
Therefore, the general dynamic of particle phase space 
distribution interacting with large-amplitude coherent waves 
may not be correctly handled by quasi-linear theory [5]. Here, 
we use an efficient characteristic-based solution to the Vlasov 

equation (Vlasov-Liouville Model) to evaluate the dynamic 
effect of phase-trapped particles on the phase space distribution 
function.. Since a large body of previous work has focused on 
quasi-linear theory, this study is important for evaluating the 
wave-particle interaction in the regime where strongly nonlinear 
effects cannot be neglected.  

II. THEORETICAL BACKGROUND 

For simplicity, we consider only parallel propagating ( 𝑧 

direction) whistler mode signals. The equations of motion 

(Lorentz force) used are shown in (1)-(4), which describe the 

interaction between relativistic (Lorentz factor 𝛾 ) electrons 

(with charge 𝑞 and mass 𝑚) and whistler mode waves (𝐸𝑤, 𝐵𝑤) 

immersed in a background inhomogeneous magnetic field 

(
𝜕𝜔𝑐

𝜕𝑧
). 
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Where 𝑝∥  ( 𝑣∥ ) and 𝑝⊥  are parallel and perpendicular 
components of electron momentum (velocity) relative to the 
background geomagnetic field. The angle between 𝑝⊥ and −𝐵𝑤 
is referred to as the gyrophase (𝜑). When the Doppler-shifted 

wave frequency (𝜔 + 𝑘𝑣∥) experienced by the particle equals a 

multiple of the gryrofrequnecy (𝜔𝑐), the particle can resonant 
with the wave (wave number 𝑘), and the resonance velocity is 

given by 
𝜔𝑐−𝜔

𝑘
. An important consequence of equations (1)-(4) 

is phase trapping and the formation of a separatrix in phase 
space. If only particles that are close to resonance are examined 
and the small contribution of centripetal acceleration due to the 
wave is neglected, equations (2) and (4) can be simplified to (5) 
and (6).  
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where 𝜔𝑡𝑟  is the trapping frequency and is given by 

√
𝑞

𝑚
𝐵𝑊𝑘𝑣⊥. 𝑆 is the “collective inhomogeneity factor” and is 

given by (7) [3]. 
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1
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2 [
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2
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To illustrate the formation of a separatrix, it is useful to 
examine particle trajectories in the ( 𝑣∥, 𝜑 ) coordinates. The 
separatrix divides the trajectories into two regions: trapped and 
untrapped. Trapped particle trajectories (interior) form closed 
curves while the untrapped particle trajectories swing around the 
separatrix (See Fig. 1a). 

III. MODEL DESCRIPTION 

The Vlasov-Liouville (VL) numerical model essentially 

solves the Vlasov equation for a given wave at a particular 

location along the field. The Vlasov equation governs the 

evolution of a collisionless plasma in phase space (𝑟, 𝑝), The 

Vlasov equation is shown in (8); the terms in parenthesis 

corresponds to equations (1)-(4). 
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Since the Vlasov equation is an advective-type partial 

differential equation (PDE), information propagates around 

phase space in a complicated manner. An accurate method of 

computing the distribution is by using the method of 

characteristics, which in the context of Vlasov equation is 

equivalent to Liouville’s theorem. This is done by considering 

characteristic curves, which are curves along which the 

distribution function is advected. This turns the PDE into a set 

of ODEs [2].  

More specifically, consider a general advection equation 

shown in (9).  

𝜕𝑓

𝜕𝑡
+ 𝑐(𝑟)

𝜕𝑓

𝜕𝑟
= 0    (9) 

This type of equation describes advection of the quantity 

𝑓(𝑡, 𝑟) at “speed” 𝑐 at “position” 𝑟. To find the characteristics, 

we find the trajectories, 𝑟(𝑡)  for which the total derivative 

vanishes, shown in (10).  

𝑑𝑓(𝑡,𝑟(𝑡))

𝑑𝑡
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+
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The original advection equation (9) can only be satisfied if 
𝑑𝑟

𝑑𝑡
= 𝑐  is satisfied. In the case of the Vlasov equation, the 

characteristic curves are found by solving (1)-(4). This means 

the value of the distribution function at any particular point can 

be determined by tracing the characteristic curves back until 

time zero. In this method, a grid is generated over (𝜑, 𝑣∥, 𝛼). 

The characteristics are traced backward (𝑑𝑡 → −𝑑𝑡) until time 

zero or until they reach the “entrance” of the interaction region.  

IV. SIMULATION RESUTLS 

As mentioned before, the theory predicts formation of a 

separatrix in phase space based on equations (5)-(6), which is 

illustrated in Fig. 1a (red dash line). The VL numerical model 

resolves in high resolution formation of the depletion in the 

region of phase-space known as a “phase space hole” that is 

shown in Fig. 1b (introducing 𝜁 =
�̇�

√2𝜔𝑡𝑟
). Additionally, it is 

observed that dynamic frequency change can occur at the back 

end of an injected short pulse when particles are released from 

the trap. . 

 
Figure 1. Formation of phase-space depletion (hole) based on a) theory (red 
dash line shows the separatrix), and b) numerical VL model at the equator 

(𝑆 = 0). 
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