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Abstract—This paper illustrates a comparison of RF X-band
propagation in a marine evaporation ducting environment using
the parabolic wave equation (PWE). The PWE method includes
standard refractive ducting effects as well as including the effects
of a stochastic rough sea surface and 3D volume turbulence scatter.
The volume turbulence scatter includes spatial refractivity scales
down to sub-wavelengths using a non-Markov modification to the
split-step PWE.

I. INTRODUCTION

A driving factor in tropospheric RF propagation is the
spatial variability in the refractivity N(z,r) = 10%(n — 1)
where n is the index of refraction (z is altitude, r» ground
range). For propagation over a curved earth, the modified
refractivity M = N + 0.157z (z in meters). N depends on
atmospheric thermodynamics, with a common form being[1]
N = 77.6(p/T)[1 + 4810e/pT] where p is the atmospheric
pressure (mbar), T is temperature (°K), and e is the water vapor
pressure (mbar). In a marine environment, vertical gradients
in e near the water surface often lead to a local minimum in
M (81(;47’2({;(1) > () creating an evaporation duct where z,4 is the
duct height.

An example of 23m evaporation duct is shown in Fig. 1
derived from a radiosonde measurement during SCSMEX:
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Fig. 1. 23m ED profile

Prior work([2],[3]) has considered effects of turbulence on
tropospheric PWE propagation. This paper extends this to self-
consistently examine the effects of a stochastic rough sea sur-
face and small scale volume turbulence refractivity perturbations
on ducted propagation at X-band using an EM parabolic wave
equation model based on the split-step rotated Green’s function
algorithm.

II. METHODOLOGY

A brief description of how the rough sea surface and turbulent
volume refractivity are computed follow.

A. Rough Sea Surface

In the PWE model, a local Fresnel boundary condition on the
EM fields is applied at the air-water interface z = n(x, y) where
(x,y) are horizontal coordinates. The surface 7 is a stochastic
realization drawn from a zero-mean random process having a
spatial wavenumber spectrum S comprised from a broadband
local wind-wave and narrow-band distant swell components:
S = Swind + >_; Sswen. The combined spectrum is shown
in Fig. 2 for 2 swell components and a wind-wave spectrum
corresponding to a wind speed U;p = 10m/s.
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Fig. 2. 2D Wave Spectrum

A realization of 7 is constructed by convolution of S with a
zero-mean 2D random Gaussian field G:

1 _
n(z,y) = W/ d kyd kor/S(k1, k2)G (ky, ko)e Tt @k tukz)
&)

The resulting 1, sampled at Scm x Scm, is shown in Fig. 3. The
sea surface significant wave height Hy,3 = 4,/mg = 0.5m,
where mg = f f S dkydks is the spectrum moment.
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Fig. 3. Sea surface patch 1x1km

B. Turbulence Scattering

Atmospheric turbulence effects on propagation are modeled
by adding a refractivity realization AN to the mean background
refractivity: N = N + AN. Realizations of AN are computed
by a 2D convolution of a zero-mean Gaussian random field G
with the 2D turbulence spectrum S weighted by the refractivity
structure constant C'y:
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S is based on a modified von Kérmén spectra: S = 0.0555[K %+
L0—2]—4/36—(L0/K)2e—Kz/Kfne—(O.s/KLo)z with K2 = k24 k2,
K,, = min(4.6/L;,2ko) where L; = 0.00lm is the inner
turbulence scale length, L, ~ 5m is the outer scale length,
and kg = 27/A the EM wavenumber. Cy is a function
of vertical gradients in the non-turbulent potential refractiv-
ity Ny = T7.6(p/0)y[1 + 481053555, v = (po/p)* >,
where 6§ = 7T7 is the potential temperature and ¢ is the
specific humidity. The refractivity structure constant Cn(2)
is: C%(2) = 2.8 x 10_12L§/3[%% 88—1\2”3—3]2/fc, where
fo = 14¢3007/0:25=1) aecounts for intermittent turbulence. The
gradient Richardson number Ri = g(% 472, where 6, is the
virtual potential temperature and U is the horizontal wind speed.
An example of a 400 x400m turbulence patch is shown in Fig. 4
corresponding to the radiosonde profile in Fig. 1.

III. RESULTS AND CONCLUSIONS

The following Fig. 5 illustrates ducted propagation in a
23m evaporation duct M-profile, for a smooth sea surface
and with/without a rough sea surface and turbulence. The TX
frequency is 9GHz, and height is 15m. The VTRPE electromag-
netic PWE propagation model was used to compute coverage
diagrams of propagation factor PF (dB). For a smooth sea
and no turbulence, PWE predicts substantial energy trapping
(PF > 10) within the duct. Not surprisingly, a moderate rough
surface and turbulence contributes to scattering out of the duct.
Work supported in part by ONR CODE-331.
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Fig. 5. Propagation results
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