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Abstract—Subsurface inversion is an essential technique for
many applications including seismic processing, oilfield well
logging an geosteering. Conventional inverse methods based on
optimization are time-consuming and sensitive to initial values.
The traditional lookup table approach which is limited by the
table size could reduce the computational time but only achieves
low accuracy. To solve these issues, we propose a physics-driven
Deep Neural Network (PhDNN) for solving non-linear inverse
problems. In this framework, the physical forward model is
utilized to produce a data misfit. Both the model misfit and
data misfit are used to train the network. As an example,
we use this framework to solve a geosteering problem which
enables the drilling direction adjusted by collected resistivity well
logging measurements. Numerical tests indicate that the proposed
network could improve the quality of the prediction significantly.

I. INTRODUCTION

The act of adjusting the well trajectory on the fly in
directional and horizontal drilling is named geosteering. In
geosteering using electromagnetic measurements, a set of
logging data (also called curves) are collected by the azimuthal
resistivity logging-while-drilling (LWD) tool (Fig. 1(a)) to
infer the values of unknown earth model parameters [1].
Solving a geosteering inverse problem is not trivial, as in
general it is a nonlinear and ill-posed problem [2].

- TS5

T3

T R1
- R2

- R4

T2 IDM

(@ (b)

Fig. 1. (a) Schematic of an azimuthal resistivity tool. T'1, T, T3 and T4
are z-direction transmitting antennas, T's and Tg are x-direction transmitting
antennas. R1 and R are z-direction receiving antennas, and Rz and R4 are
x-direction receiving antennas. (b) A 3-layer geosteering earth model defined
by the electrical resistivity of each layer (R, R2, R3), distance-to-boundary
(Dup, Dan) and relative dip angle of the logging tool (Dip).
Experiments and observations suggest physical theories,
which in turn are used to predict the outcome of experiments.
Solving a forward problem is to calculate the output (y) of a
physical model (f) given its parameter set z, i.e., y = f(z)
and x € D. Here F': X — Y is a nonlinear operator between
Banach spaces (X, || -||) and (Y, || - ||) with domain D. For
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the general case, the inverse relationship can be written as
x = f~Y(y), where f~! defines the inverse mapping and
y is the observed output. In the ill-posed case where no
additional information is available, the solution for x is either
highly unstable, highly undetermined or both. One practical
method adopted by the production for fast computation is
to use the lookup table [3] which is aimed to find the best
matched samples in a predefined table. Some other algorithms
like Levenberg-Marquardt algorithm [4] and Markov Chain
Monte Carlo algorithm [5] [6] could reach an accurate solution
but are time-consuming. Machine learning approaches have
also achieved limited success in the cases of geoacoustic
model [7] and geosteering earth model [8]. More recently,
as the deep learning technique gains its popularity in function
approximation, the Deep Neural Network (DNN) enabled end-
to-end mapping has been used to solve inverse problems [9].
However, most deep learning based approaches are data driven
and the inverse mapping is learned on a massive dataset
for training. Some researches have proved that some simple
physical transformation, e.g. affine transform [10], could be
used in deep learning. Consequently, in this paper, we suggest
that, by incorporating the forward model explicitly in the
network, the end-to-end mapping is better regulated with a
fast convergence rate in the learning cycle.

II. PHYSICS-DRIVEN DEEP NEURAL NETWORK

The relationships among the well logging measurements, the
sources and the media are essentially governed by the physics.
Generally we define the mean square loss (MSE) between the
prediction of the earth model and the ground truth as “model
misfit”, and the MSE between the synthesis measurements
from the predicted model and the observed measurements as
“data misfit”. In this paper, we propose a novel physics-driven
deep neural network (PhDNN) for solving the inverse problem
by involving both the model misfit and the data misfit (Fig. 2).
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Fig. 2. The diagram of the PhDNN.
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(a) Ground truth.

(b) Inverted earth model by data-driven network.

100

le-01
50 G0 70 80 20 30 10 50 60

x (ft)

le-01

(c) Inverted earth model by PhDNN.

Fig. 3. Predicted earth models from different methods.

In Fig. 2, y denotes observed measurements. x is the
real earth mode. N is the network with trainable param-
eters ©. The predicted earth model can be represented as
N(y, ©). The synthesis measurements could be defined as
F(N(y, ©)), where F is the forward model. Let £, be the
model misfit and Lq4; be the data misfit. The training process
of the network could be formulated as:

arg min B1Llm(y, ©)+ BLaly, F, ©), (1-1)

[/ml(y, 6) = ”X - N(y? @)||§7 (1_2)
La(y, F, ©) =y - F(N(y, ©))II5, (1-3)
We use 31, B2 to balance the contributions from two different
misfits. Note that calculate the data misfit requires us to

estimate the Jacobian matrix of F so that the gradients from
(1-3) could be back propagated correctly.
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Fig. 4. The numerical testing results of different methods. The results from
different samples are marked differently.

III. EXPERIMENTS

The training for the network is divided into two phases.
In the first phase, we only use L, to train the network.
Then we apply both L, and Lg) to train the network. The
resistivities of subsurface formation layeres are restricted in the
range of [0.1,1000] [€2 - m], the upper boundary is restricted in
[—35, 0] [ft] and the lower boundary is restricted in [0, 35] [ft]
(assuming pointing down is the positive vertical direction, and
the vertical depth of the tool center is O [ft]). During training,
b1 =02 = % and the network is trained for 80,000 steps.

We test the network with more than 100 3-layer models
of 80 observed points. All model samples are tested by

a traditional lookup table, a data-driven network and our
PhDNN. The testing results are drawn in Fig. 4, where L, is
the x-axis and Ly is the y-axis, and each point represents the
average misfits of a model sample. With our proposed network,
both the model misfit and data misfit are lower than that of the
other methods statistically. Fig. 3 compares inversion results
obtained through different approaches.

IV. CONCLUSION

In this work, we proposed a novel PhDNN to solve the sub-
surface inversion problem using resistivity geosteering data.
The inversion accuracy is significantly improved by introduc-
ing a data misfit that measures the disagreement between the
observed measurement and the synthesized measurements by
forward modeling. The test results also demonstrate superior
inversion accuracy with much less storage resources required
than the widely adopted lookup table method.
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