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Abstract—We apply the Adaptive Relevance Vector Machine
to automatically select the measurement set in a tomographic
setting, from all the arrangements or combinations of the measur-
ing elements, that yield the lowest level of uncertainty about the
estimated results, while maintaining good image reconstruction.
To illustrate the proposed method, we present simulation results
derived from Electrical Capacitance Tomography.

I. INTRODUCTION

Usually, tomography involves the solution of an inverse
problem which is ill-posed and ill-conditioned [1], [2]. This
translates into a severely underdetermined system of equations.
In the recent years there have been numerous advances in
specific instances of tomographic applications that enable
the acquisition of more data from the same physical sensor
setup, helping to reduce the underdeterminedness [3]. How-
ever, in many of these cases, extra measurements do not
always translate into improvements in image reconstruction
and parameter estimation performance, and they often lead
to a prohibitive computational burden [4], [5]. In this work
we present the application of the Adaptive Relevance Vector
Machine (Adaptive RVM) into tomographic problems as a way
to reduce the data set and automatically select the subset of
measurements/data points that reduce the most the uncertainty
levels about the estimated values. We present simulations
results from Electrical Capacitance Tomography (ECT) [6] to
illustrate the Adaptive RVM.

II. MATHEMATICAL MODEL

In tomography, if the region of interest (RoI) is discretized
into M pixels/voxels and there are N measurements/data
points, the inverse problem that is usually present can be stated
as follows [7], [8]:

t = F (w) , (1)

where t represents the N (known) boundary measurements, w
represents the M (unknown) values of the physical quantity
involved in the particular instance of the problem, and F rep-
resents the functional relationship that describes the physical
phenomenon connecting the values in t with the ones in w.

Although the relation in (1) is almost always nonlinear, the
problem can be linearized by considering the Born approxi-
mation, where a sensitivity map is determined between small
perturbations in the RoI and measurement results [9]. With
this idea, the model of (1) becomes

t ≈ Φw , (2)

where Φ represents the sensitivity matrix, whose entries indi-
cate how much change in the quantities of t results from a very
small change in the quantities of w for their corresponding
pixels/voxels.

III. ADAPTIVE RELEVANCE VECTOR MACHINE

A. Relevance Vector Machine

The Relevance Vector Machine (RVM) method is a
Bayesian algorithm introduced by [10] to solve a regression
problem, like the one in (2), by learning a probabilistic model
from the data and by using a sparse set of basis vectors defined
by the model matrix. The main features of the RVM method
are: (i) it allows to incorporate some level of prior information
(via Bayes rule) about the problem; (ii) it provides measures
of certainty around the estimated values; and (iii) due to its
sparse nature, it can achieve very good estimates with very
few basis functions (i.e., columns of the model matrix) [11],
[12]. The model that RVM solves takes the form of

t = Φw + ε , (3)

where ε is the noise/error vector, whose entries are assumed to
be independent and identically distributed (iid) with Gaussian
distribution of 0 mean and variance σ2 (i.e., εn ∼ N (0, σ2)).

The probabilistic view that is involved in (3) yields
w|Φ, t,α, σ2 ∼ N (µ,Σ), where α represents the vector
of M independent hyperparameters that help to express a
preference for smoother models (avoiding overfitting), and

µ = σ−2ΣΦT t , Σ = (σ−2ΦTΦ + diag(α))−1 . (4)

Under this setting, the estimate of w is simply given by µ.
Additionally, Σ represents the level of uncertainty about the
estimated values.



B. Adding data to the original model: Adaptive RVM

One of the main strengths of RVM is its ability to pro-
vide, through Σ, a measure of “certainty” around the set
of estimated values. By exploiting this fact, the authors of
[13] proposed an adaptive method that allows to incorporate
new information into the model, which in turn reduces the
uncertainty level directly in each iteration of the algorithm.
The approach of [13] is based on computing the (differential)
entropy of w (which is a measure of its level of uncertainty,
its variability) and the change that adding a new row to the
matrix Φ induces over it. This is as follows:

hnew(w) = h(w)− 1
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where h(w) represents the entropy of w from the original N
measurements, and ϕN+1 represents the new row that is added
to the matrix Φ (part of a new measurement).

In order to minimize (5), the expression ϕN+1Σϕ
T
N+1

must be maximized. For a fixed Σ, this is achieved by its
leading eigenvector (appropriately normalized). This solution,
however, cannot be used in practical tomographic problems,
as the leading eigenvector of the covariance matrix Σ does
not have a direct connection with physical quantities. A
more practical way of adaptively adding new data can be
obtained by establishing two subprocedures: one offline (i.e.,
with empty RoI) and another one online (i.e., during the
actual measurement). In the former, a dictionary L with all
the desired sensitivity vectors is constructed. These sensitivity
vectors correspond to different measurement configurations
across all that are available in the physical setup.

The online subprocedure, on the other hand, is as fol-
lows: (i) select the sensitivity vector from L that maximizes
ϕN+1Σϕ

T
N+1 and append it at the end of Φ, (ii) obtain the

new entry for t by performing the measurement dictated by the
selected ϕN+1, and (iii) perform a new reconstruction through
RVM using the updated t and Φ. These steps must be repeated
until a desired level of certainty has been reached.

The procedure defined above has two basic benefits. First,
if more information of the same setup can be obtained, then
the Adaptive RVM can reduce the level of uncertainty for the
reconstructed images. Second, if no additional data can be
obtained from the setup, then the Adaptive RVM can provide
“good enough” results with fewer measurements and with
comparable amount of confidence.

IV. ADAPTIVE RVM IN ECT

We illustrate the approach in a ECT process tomographic
setting [6], [14] where the permittivity distribution in the RoI is
to be determined from a set of capacitance measurements taken
from boundary electrodes. To illustrate the Adaptive RVM
method (in particular, the second benefit mentioned above),
we show reconstruction results from an ECT simulated setup
in Fig. 1. In these plots we can observe that the Adaptive RVM
is capable of producing good results with fewer measurements
as compared to simply adding measurements sequentially one
by one .

(a) True permittivity distribution. (b) Regular RVM image using all
data points.

(c) Adaptive RVM image with
54% of measurements

(d) Regular RVM image by
adding 54% of measurements se-
quentially.

Fig. 1: Reconstruction results from an ECT simulated setup.
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