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Abstract—The parabolic wave equation (PWE) has been used
extensively to model propagation in electrically large domains
dominated by forward scatter. A PWE method for modeling prop-
agation through an inhomogeneous body-of-revolution (BOR)
was recently described, wherein a three-dimensional result was
synthesized from a summation of independent solutions obtained
with two-dimensional solvers. Far-field solutions were obtained by
applying scalar diffraction theory on the axial boundary—using
a cylindrical coordinate system—which required a numerical
domain with a large radial extent. This paper presents an efficient
method for extrapolating the field on the radial boundary into
the far field, allowing for a numerical domain with a smaller
radial extent, thereby increasing computational efficiency.

I. INTRODUCTION

In [1] a BoR-PWE was presented for problems adhering
to the geometry shown in Fig. 1. The BoR-PWE allowed for
computationally efficient modeling of electrically large prob-
lems with weak backscatter under a paraxial approximation
by seeking solutions of a scalar Helmholtz-type equation,

(
∇2 + k20εr(ρ, z)

)
ψ(ρ, z, φ) = 0, (1)

of the form

ψ(ρ, z, φ) =

N∑
n=−N

ψn(ρ, z) e
inφ (2)

with ψn(ρ, z) = e−ik0zun(ρ, z). Under the assumed cylindri-
cal symmetry of the relative permittivity, each un is regarded
as the solution to a PWE under the Claerbout approxi-
mation [2]. This approach is numerically efficient because
whereas (1) must be solved on the entire three-dimensional
domain simultaneously, the BoR PWE entails solving 2N +1
independent two-dimensional problems, each of which can be
solved by sequentially advancing the solution forward in the
z direction.

The far-field extrapolation method in [1] required a nu-
merical domain with a large enough radial extent to ensure
that the radial boundary was not significantly illuminated.
Here, simple expressions are derived for extrapolation of
the field on the radial boundary, allowing a PWE domain
with a much smaller radial extent to be employed. Because
perfectly matched layers do not effectively suppress waves
with grazing incidence [3], an absorbing layer is added. A non-
local boundary condition [4] could serve the purpose of both
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Fig. 1. Geometry for modeling wave propagation through an inhomogeneous
BoR. The field in the extrapolation region is computed by extrapolating the
field on ρb and zb using Huygen’s principle.

layers, but its implementation is more involved. By reducing
the radial extent of the numerical domain, far-field solutions
can be obtained much more efficiently.

II. DERIVATION

Using Huygen’s principle, the field outside of the PWE
domain, due to the field on the radial boundary can be written
as

ψ(cyl)(r) =

zb∫
0

dz′
2π∫
0

dφ′ ρ′

(
ψ(r′)

∂g0(r, r
′)

∂ρ′

− g0(r, r′)
∂ψ(r′)

∂ρ′

)∣∣∣∣∣
ρ′=ρb

, (3)

with

g0(r, r
′) = −e

−ik0|r−r′|

4π|r − r′|
. (4)

Substituting (2) and

g0(r, r
′) ∼ −e

−ik0r

4πr
eik0ρ

′ sin θ cos(φ−φ′) eik0z
′ cos θ, (5)

into (3) where ∼ denotes far-field equality and θ is the polar
angle, results in

ψ(cyl)(r) ∼ e−ik0r

r

N∑
n=−N

einφ f (cyl)
n (θ), (6)



where

f (cyl)
n (θ) = in

ρb

2

[
kρ J

′
n(kρρb)

zb∫
0

dz′ ψn(ρb, z
′) eikzz

′

+ Jn(kρρb)

zb∫
0

dz′
∂ψn(ρb, z

′)

∂ρb
eikzz

′

]
.

(7)

In (7), Jn denotes the Bessel function of the first kind and
order n [5], J ′n is the derivative of Jn with respect to its
argument, kρ = k0 sin θ, and kz = k0 cos θ. Numerically,
∂ψn/∂ρ

′ is evaluated with a central-difference approximation.
The field on the axial boundary is similarly extrapolated as

ψ(cap)(r) ∼ e−ik0r

r

N∑
n=−N

einφ f (cap)
n (θ), (8)

where

f (cap)
n (θ) = i(n+1)k0 cos θ

ρb∫
0

dρ′ ρ′Jn(kρ ρ)ψn(ρ
′, zb) e

ikzzb .

(9)

The far-field pattern is thus defined as

f(θ, φ) =

N∑
n=−N

einφ
(
f (cyl)
n (θ) + f (cap)

n (θ)
)
. (10)

III. RESULTS AND CONCLUSION

Fig. 2 shows an example wherein both the axial and radial
boundary are appreciably illuminated. Fig. 3 shows the far-
field patterns as a function of θ and φ when extrapolated
directly from the (z = 0)-plane, compared to the result when
extrapolated from both the axial and radial boundaries. The
results are in very close agreement.

Fig. 2. BoR-PWE prediction of transmission loss from a 20-wavelength-
diameter circular aperture illuminated by a planewave propagating at 15◦

relative to the z-axis.

These results confirm the accuracy of the cylindrical-
boundary-extrapolation method, which will allow smaller nu-
merical domains to be used in the PWE implementation.
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Fig. 3. Far-field patterns extrapolating the field directly from the aperture
(a), and using both the axial and radial boundaries (b). The radial coordinate
corresponds to the polar angle, θ, and the azimuthal coordinate corresponds
to φ.
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