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Abstract—The Proper Orthogonal Decomposition technique
for model order reduction is applied to electromagnetic particle-
in-cell algorithms. The resulting low-dimensional model can be
used to achieve solutions with acceptable accuracy and reduced
computational costs in problems with charged particle beams.

I. INTRODUCTION

Particle-in-Cell (PIC) algorithms have been used for a
variety of problems involving charged particles and beams
(see e.g. [1], [2] and references therein), but they remain
an expensive technique in terms of computational resources.
The Proper Orthogonal Decomposition (POD) is a technique
that lowers the computational cost of numerical experiments
by projecting the solution into a (smaller) space spanned by
a number of representative modes [3]–[6]. Due to previous
success in applying the POD to EM simulations [7], [8], in
this work the POD is applied to a finite-element time-domain
(FETD) PIC algorithm.

II. PROPER ORTHOGONAL DECOMPOSITION

POD-based models are construed with sampled data-points
from the quantity of interest [3], [5], which can be obtained
from a numerical or practical experiment. In the present case,
electric field and magnetic flux data is obtained from a full
FETD-PIC simulation via construction of a “snapshot” matrix
encoding spatial and temporal variations of each quantity.

Let u denote either 1-D array of DoFs, i.e., un = en

or bn−
1
2 . Then a snapshot matrix for u with l entries is

constructed by harvesting the values of all DoFs for the tran-
sient solution at specific sampling points ni, i ∈ {1, 2, ..., l}
and arranging them side-by-side so that [Au]i,j = u

nj

i .
The snapshot matrices can be decomposed via singular value
decomposition (SVD), viz. [3]

[Au] = [Uu] · [Σu] · [Vu]
T
, (1)

where [Uu] and [Vu] are unitary matrices and [Σu] is a rectan-
gular diagonal matrix with main diagonal elements containing
the singular values σu,i of [Au] in descending order and zero
elsewhere. The columns of [Uu] form a set of orthonormal
vectors

{
ψu,1,ψu,2, · · · ,ψu,NDoF,u

}
that can be regarded as

a basis for the spatial dynamics, while the columns of [Vu]
form a set of orthonormal vectors

{
φu,1,φu,2, · · · ,φu,l

}
that

can be regarded as a basis for the temporal dynamics [6], [9].

Choosing a reduced number du of modes from the set of
spatial dynamics creates the reduced set {Ψu,i}dui=1 or, in
matrix form, [Ψu], which can be used to lower the dimension
of the numerical simulation.

III. ELECTROMAGNETIC MODEL REDUCTION

The time update equations for the discrete degrees of
freedom (DoFs) of the fields in the FETD-PIC simulation are
given by (details in [1], [10], [11])

bn+
1
2 = bn−

1
2 −∆t [C] · en, (2a)

[?ε] · en+1 = [?ε] · en + ∆t

(
[C]

T ·
[
?µ−1

]
· bn+ 1

2 − in+
1
2

)
,

(2b)

which can be projected onto the POD basis via

en ≈ [Ψe] ·αne , bn−
1
2 ≈ [Ψb] ·αn−

1
2

b , (3)

which allows the update equations to take the reduced form

α
n+ 1

2

b = α
n− 1

2

b −∆t[Ψb]T · [C] · [Ψe] ·αne , (4a)

αn+1
e = αne + ∆t

(
[Ψe]T · [?ε] · [Ψe]

)−1 ·
(

[Ψe]T · [C]T ·

·
[
?µ−1

]
· [Ψb] ·αn+

1
2

b − [Ψe]T · in+ 1
2

)
, (4b)

where not only the DoFs themselves are reduced, but the sys-
tem matrix inversion

(
[Ψe]T · [?ε] · [Ψe]

)−1
is also reduced

due to its much smaller size, allowing for explicit update in the
scheme via direct inversion without need of approximations.

IV. NUMERICAL EXAMPLE

Consider a vacuum-filled square cavity with perfect mag-
netic conductor (PMC) boundary conditions. The cavity walls
each measure 1 [m], and it has initial zero field conditions
and no particles. The cavity is discretized with an irregular
triangular mesh containing N0 = 1633 nodes, N1 = 4768
edges and N2 = 3136 faces. Electrons are injected into the
cavity at the lower boundary with velocity v0 = 1×104 [m/s]
and absorbed at the upper boundary, with an external bias set
to Vb = 1.5× 104 [V]. Each computational particle represents
100,000 physical electrons, and five particles are injected every
five time-steps according to a uniform random distribution at
y = 0 between x = 0.4 and x = 0.6. The time step interval
is ∆t = 1× 10−11 and the simulation is run for n = 100, 000



(a) n = 50, 000 (b) n = 100, 000

(c) n = 50, 000 (d) n = 100, 000

Fig. 1. Comparison between electric field lines and electron positions between
the full FETD simulation (top) and the reduced POD simulation (bottom).

time steps. The snapshot matrices are construed by harvesting
DoF values every 500 time steps until n = 20, 000.

Fig. 1 shows a comparison between electric field lines and
particle positions in the FETD and POD simulations, while
Fig. 2 shows the spectrum of singular values for the electric
field and the magnetic flux, as well as the relative global error
between the two simulations, calculated via

δne =
1

Ns

∥∥∥∥∥∥∥∥
En

fetd −En
pod(

1
Nt

Nt∑
n

En
fetd

)
∥∥∥∥∥∥∥∥
2

, (5)

where subscripts fetd and pod stand for quantities of the full
and reduced-order simulations, respectively, Nt is the total
number of time-steps in the simulation and Ns is the total
number of spatial samples used in the error measurement.
Good accuracy (relative error lower than 0.1%) is accom-
plished by the reduced simulation at lower computational cost
(6 modal DoFs as opposed to N1 + N2 = 7, 904 in the full
simulation for both fields).

ACKNOWLEDGEMENT
This work was supported in part by NSF grant ECCS-

1305838, DTRA grant HDTRA1-18-1-0050, and OSC grants
PAS-0061 and PAS-0110.

REFERENCES

[1] D.-Y. Na, H. Moon, Y. A. Omelchenko, and F. L. Teixeira, “Local, ex-
plicit, and charge-conserving electromagnetic particle-in-cell algorithm
on unstructured grids,” IEEE Trans. Plasma Sci., vol. 44, pp. 1353–1362,
2016.

(a) σe,i (electric field) (b) σb,i (magnetic flux)

(c) Global relative error between full and reduced simulations.

Fig. 2. Details on the singular values for (a) electric field and (b) magnetic
flux, as well as (c) global error between simulations. The reduced model used
5 modes for the electric field and 1 mode for the magnetic flux; the singular
values associated with the retained modes are marked in red.

[2] D.-Y. Na, H. Moon, Y. Omelchenko, and F. Teixeira, “Relativistic
extension of a charge-conservative finite element solver for time-
dependent maxwell-vlasov equations,” Physics of Plasmas, vol. 25,
no. 1, p. 013109, 2018.

[3] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, and C. Wu, “Proper orthogonal
decomposition and its applicationspart i: Theory,” Journal of Sound and
vibration, vol. 252, no. 3, pp. 527–544, 2002.

[4] A. Chatterjee, “An introduction to the proper orthogonal decomposition,”
Current science, pp. 808–817, 2000.

[5] M. Rathinam and L. R. Petzold, “A new look at proper orthogonal
decomposition,” SIAM Journal on Numerical Analysis, vol. 41, no. 5,
pp. 1893–1925, 2003.

[6] N. Aubry, “On the hidden beauty of the proper orthogonal decomposi-
tion,” Theoretical and Computational Fluid Dynamics, vol. 2, no. 5-6,
pp. 339–352, 1991.

[7] Z. Luo and J. Gao, “A pod reduced-order finite difference time-domain
extrapolating scheme for the 2d maxwell equations in a lossy medium,”
Journal of Mathematical Analysis and Applications, vol. 444, no. 1,
pp. 433–451, 2016.

[8] K. Li, T.-Z. Huang, L. Li, S. Lanteri, L. Xu, and B. Li, “A reduced-
order discontinuous galerkin method based on pod for electromagnetic
simulation,” IEEE Transactions on Antennas and Propagation, vol. 66,
no. 1, pp. 242–254, 2018.

[9] N. Aubry, R. Guyonnet, and R. Lima, “Spatiotemporal analysis of
complex signals: theory and applications,” Journal of Statistical Physics,
vol. 64, no. 3-4, pp. 683–739, 1991.

[10] H. Moon, F. L. Teixeira, and Y. A. Omelchenko, “Exact charge-
conserving scatter-gather algorithm for particle-in-cell simulations on
unstructured grids: A geometric perspective,” Comput. Phys. Commun.,
vol. 194, pp. 43–53, 2015.

[11] J. Kim and F. L. Teixeira, “Parallel and explicit finite-element time-
domain method for Maxwell’s equations,” IEEE Trans. Antennas
Propag., vol. 59, pp. 2350–2356, 2011.


		2018-08-30T11:26:02-0700
	Preflight Ticket Signature




