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Abstract—Techniques for estimation of a dense spectrum from

irregularly sampled data are typically either very processing

intensive or suffer from large amounts of bias in the estimate due

to signal leakage. This paper proposes an estimation algorithm

that has similarities to the successive interference cancellation

algorithms from the communications literature. The algorithm

successively estimates larger amplitude frequency components

first and then subtracts out those estimates before continuing on

to lower amplitudes. The algorithm is able to maintain the low

complexity of an FFT-based algorithm while overcoming the poor

bias performance typically associated with those algorithms.

I. INTRODUCTION

Spectral estimation techniques for the case when data are
sampled irregularly exist mainly for the case of sparse spectra
(see [1] for a review paper of techniques). That is, when
the spectrum only has a few discrete sources such as single
frequency tones. For the case of a dense spectrum, there are
far fewer options [2], [3], [4], [5] as well as using standard
spectral estimation techniques after interpolation. These op-
tions can be classified into O (N logN) type algorithms like
interpolation of the data followed by standard periodogram
processing, O(N2

) algorithms that use the Discrete Fourrier
Transform directly on the irregularly spaced samples, and
O(N3

) algorithms that rely on Maximum Likelihood or Least
Squares principals. This paper proposes an ad hoc O(N logN)

algorithm that has performance comparable to the much more
complex algorithms.

The case of a dense spectrum estimation with irregular
sampling occurs in fields dealing with estimating parameters
of a turbulent flow [6], [7], [8]. These may be either one or
two dimensional data sets, so it is important that the algorithm
be extensible to multiple dimensions. For these turbulent flow
data problems, the spectrum is usually described by a power
law or some other monotonically decreasing spectrum. The
algorithm presented takes advantage of this fact, although
it may be extended to dealing with other smooth spectral
functions.

II. FAST SPECTRAL ESTIMATION

A. Algorithm Description

The proposed algorithm overcomes the signal leakage prob-
lem of other fast algorithms by successively estimating the
largest amplitude frequency component first and then sub-
tracting out this component before estimating the next largest.

This is similar to the way successive interference cancellation
algorithms work in the communications literature [9]. Figure 1
illustrates how this algorithm works. The smooth green line
labeled simulated data spectrum is the actual spectrum to be
estimated and the yellow “Fourier transform of the data” shows
what a naive Fourier transform of the data would be (note
the large amount of signal leakage at higher frequencies).
The algorithm starts by fitting a first order polynomial to
the irregularly sampled data (blue curve in the figure). The
spectrum of this first order fit is calculated and only the
spectrum within T dB of the maximum is kept (T = 5 for
the example shown below). A residual is then calculated by
subtracting the polynomial fit from the data. Let x1 be the raw
data and ˆ

x1 be the first order fit. Then define the residual as

x2 = x1 � ˆ

x1. (1)

This algorithm iterates as follows:
1) Fit a nth order polynomial to the nth residual signal xn.

This fit is represented as ˆ

xn.
2) Calculate the spectrum of ˆ

xn and add the top T dB of
the spectrum to the previously calculated spectrum.

3) Calculate the (n+ 1)

th residual as

xn+1 = xn � ˆ

xn. (2)

The nth order polynomial fit to each residual is shown in
the figure. This algorithm maintains the O(N logN) compu-
tational order by resampling the polynomial fitted data to a
uniform sample rate with the same number of samples as the
input data and using the FFT to calculate the spectrum. All
other processing within this algorithm is O(N).

B. Performance of Algorithm

An example of the performance of this algorithm is illus-
trated in Figure 2. For this case, simulated data are generated
by running Gaussian noise through a 4

th order digital Butter-
worth filter with a cutoff frequency of 0.005 Hz and a sample
rate of 1 Hz. The data are then decimated randomly such that
the average time between samples is 10 seconds and there are
only 100 samples to calculate the spectrum. This small number
of samples is a challenge to the Maximum-Likelihood based
algorithms. As seen in this figure, the average performance
of the algorithm is a close match to the truth down to about
55 dB below the peak.



Fig. 1. Illustration of the fast successive spectral estimation algorithm. Each
stage of the approximation is shown in relation to the final spectral estimate
as well as the truth spectrum.

Fig. 2. Average estimated spectrum (average taken over 20 realizations).
Solid line represents true spectrum (4th order digital Butterworth filter with
cutoff at 0.005 Hz), circles represents periodogram using the DFT directly on
irregularly spaced samples, ’x’s represents the periodogram of an interpolated
data set (using FFT), and triangles represent proposed algorithm.

III. APPLICATION

This algorithm is easily extensible to multi-dimensional
data. For this, a d-dimensional polynomial is used to approx-
imate the data at each stage and a d-dimensional FFT is used
for computing the spectrum.

Currently, this algorithm is being used to estimate a 2-
dimensional ionospheric irregularity spectral density func-
tion [6]. Data from large networks of GPS receivers in both
Japan and California are being used to estimate the fluctuations
in the total electron content (TEC) of the ionosphere (see
Figure 3 for an illustration of the differential TEC over Japan
on 2 August 2015). The spectral density of these fluctuations
are estimated through the proposed algorithm and results are
shown in Figure 4.
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