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Abstract—We briefly define the scope of the field of quantum
electromagnetics and introduce the dressed state approach to
tackle problems in this field, such as atom-field interaction, multi-
atom coherence as well as the Casimir-Polder interaction amongst
atoms and their electromagnetic environments. In particular we
emphasize how classical computational electromagnetic knowl-
edge is injected into these quantum mechanical calculations. The
principle results of our efforts are summarized and a lookout for
future studies are presented.

I. INTRODUCTION

Recent advances in circuit quantum-electrodynamics (C-
QED) have reinvigorated interests in the theoretical models of
QED [1]. Since relativistic effects and the internal structures
of the atoms are both unimportant for the artificial atoms used
in C-QED, one is prompted to shift away from conventional
QED in modeling these systems. Instead, the complicated
microwave circuits in which these artificial atoms operate
invites the computational electromagnetics (CEM) community
onto the scene. This special interplay between simplified
atomic models and complex EM environments have been
termed quantum electromagnetics (QEM) [2], [3].

In this summary paper we present our group’s recent
progress in the field of QEM, especially in connection with
the dressed state approach [4]–[8]. In Section II the pertinent
equations of QEM are given. In Section III the dressed state
approach is reviewed and our main results stated. In Section
IV the dressed states solutions are connected with the Casimir
Polder interaction. Finally, Section V presents our goal of
using the dressed state approach to extend QEM to treat
dissipative quantum systems [9].

II. EQUATIONS OF QUANTUM ELECTROMAGNETICS

Quantization of EM fields have long been studied [1],
[6]. However, the conventional approach relies on a mode
decomposition method that may prove costly for complex EM
environments and altogether impossible for dissipative ones. In
[2], [3], an alternative field quantization approach in arbitrary
lossless media is presented without using mode decomposition.
This approach is akin to the correspondence principle between
classical and quantum mechanical systems.

For external sources the equations of QEM are [3]:

∇×Ĥ(r, t)−∂tD̂(r, t) = Ĵext(r, t), ∇·D̂(r, t) = ρ̂ext(r, t)

∇× Ê(r, t) + ∂tB̂(r, t) = 0, ∇ · B̂ = 0 (1)

In this external source regime it was shown that the classical
dyadic Green’s function completely captures the radiation
of the sources into quantized fields [3]. The full dynamical
problem of QEM, i.e. the one with internal sources, is attained
if in addition to (1) the equations of motion of the source
driven by the quantized fields are given. In the next section we
discuss the solution of an important class of this system using
the dressed state approach, and focus on how the classical
dyadic Green’s function can be used in the solution.

III. DRESSED STATE APPROACH

The dressed state approach is similar in spirit to diagonal-
izing a matrix system [4]. It is by no means a new method in
treating QED problems [6]–[8]. The model Hamiltonian is:

Ĥ =
∑
n

ωn b̂
†
nb̂n +

∑
k

ωkâ
†
kâk

+
∑
n,k

ign,k(b̂†n + b̂n)(âk − â†k) (2)

Here the b̂n, b̂†n represent atomic excitations, which may obey
fermion or boson commutation relations, corresponding to
few-level or harmonic oscillator atoms, respectively [4]. The
operators âk, â

†
k represent field excitations, or photons, which

are addressed by their wavenumber number k. The term in
the second line of (2) represents the full quantized dipole
interaction1 Ê(rn) · d̂n. The Hamiltonian operator in (2) is
a mode decomposed representation of the system in (1), albeit
with internal sources that are highly simplified.

The goal of the dressed state approach is to find linear
combinations of the original atomic and field excitations (or
de-excitations) that are non-interacting, and hence evolve in
time as time harmonics. For harmonic oscillator atoms, the
dressed operators have the following expansion:

d̂i =
∑
n

Ai,nb̂n +
∑
n

Bi,nb̂
†
n +

∑
k

Fi,kâk +
∑
k

Ki,kâ
†
k (3)

The dynamics of the system are then posed in terms of the
transformation between observables and these dressed state
operators. Such a solution of the dynamics is non-perturbative.
The problem is in fact closely related to classical coupled

1When the product of operators is expanded in (2), two of the resulting
terms involve one creation and one annihilation operator, these are termed
rotating wave terms, while the other two are the counter rotating wave terms.



mode theory. However, the counter rotating wave terms in the
dipole interaction produces some rather non-classical effects.

For few-level atoms, the dressed state solution is not as
straightforward. One must separate the dynamics into different
excitation subspaces [4]. Exact solutions are only possible
under the rotating wave approximation, counter-rotating wave
terms must be treated using perturbation theory [11].

The use of the mode decomposition picture is problematic
in light of our previous discussion. However, it is only a
temporary measure as all quantities of interest can be related
to the dyadic Green’s function through the relation [4], [5]:

Γnm(ω) =
k2

ε π
dn · Im{ḠE(rn, rm;ω)} · dm (4)

Here, Γnm is the cooperative decay rate between the n-th and
m-th atomic excitation and ḠE is the electric dyadic Green’s
function. The quantities dn,dm are the dipole moments of the
atoms. The dressed state approach allows one to write down
the solution to the dynamics in terms of Γnm. Relation (4), in
turn, means the solution is fully dependent on the numerical
evaluation of the classical dyadic Green’s function [4], [5].
Therefore, a full CEM based solution procedure is established
for an important class of QEM problems.

Using this solution procedure we have been able to calculate
the following in arbitrary lossless EM environments.

1) Spontaneous emission and single photon scattering from
a single atom [4].

2) Super- and sub-radiance of multiple atoms [5].
3) Atom-photon bound states analogous to Anderson local-

ization in solid state systems [4].
4) Tight-binding behavior of multiple atom-photon bound

states [5].

IV. CASIMIR-POLDER INTERACTION

The Casimir-Polder interaction between atoms and con-
ducting surfaces is one of the most famous predictions of
QED. The experimental observation of this interaction proves
the existence of the quantum vacuum. Previously our group
had performed calculations of the Casimir force between
conducting objects using CEM techniques [12], [13]. The
dressed state approach allows us also to calculate the Casimir-
Polder interaction between atoms and surfaces, and among
atoms.

A dressed state calculation of the Casimir-Polder interaction
for harmonic oscillator atoms and few-level atoms have been
done in [10] and [11], respectively. We will present the
connection of the atom-photon bound state energy reported in
[4], [5] with the Casimir-Polder interaction between atoms and
surfaces, as well as among atoms. In particular, the distinction
of the Casimir-Polder energy with and without the rotating
wave approximation will be made.

V. DISSIPATIVE QUANTUM ELECTROMAGNETICS

Quantum dissipation is a difficult problem since loss cannot
be easily incorporated into a quantum system, as opposed to
its classical counterpart [14]. However, quantum dissipation

is becoming more important with the advances in quantum
computing and quantum information processing hardware.
A correct treatment of quantum dissipation is vital to the
development of next generation quantum technologies.

The main challenge in dissipative quantum systems is the
preservation of equal time commutator for the operators of
interest. This is equivalent to ensuring that the total quantum
system is Hermitian and hence energy conserving [9]. In the
regime of QED and QEM, dissipative quantum systems were
first studied in the quantization of electromagnetic fields in
dielectrics [6], the phonons in the dielectric being the source of
dissipation. A dressed state approach was employed, in which
the coupled photon and phonon excitations, termed polaritons,
are found to diagonalize the total Hamiltonian. Though con-
taining good physical insight, the polariton operators are rather
unwieldy for actual calculations. The alternative approach is
to introduce Langevin sources for the field operators [9], [14].

We propose to use the dressed state approach to connect the
quantum dissipation with the classical, lossy dyadic Green’s
function. Early attempts at this connection will be presented
in the context of a one dimensional system of atoms, photons
and phonons. Such a system, though simple, is relevant to
experiments in circuit QED where a microwave transmission
line connects several superconducting qubits.
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