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Discretization of differential equations in electromagnetics produce very large but 
sparse linear systems that are often solved iteratively in lieu of memory demanding 
direct sparse matrix factorization methods. When the underlying models involve 
many independent excitations, or electrically large or complex or near resonance 
structures, even the most advanced preconditioned iterative methods lose 
effectiveness and efficiency. This problematic behavior, coupled with the recent 
proliferation of RAM memory has led to a recent resurgence of direct solution 
methods. Classical sparse Cholesky, LDLT or LU factorization methods when 
coupled with advanced fill-in reducing reorderings such as multilevel nested 
dissection, and the multi-frontal or super-nodal cache aware computing algorithms 
can lead to very impressive performance.  Most of these advanced algorithms are 
today available as “black-box” packages in the form of sparse matrix direct solver 
libraries, e.g. MUMPS, PARDISO, etc, and are heavily used by computational 
electromagnetics practitioners around the world. 
 
This paper will outline an alternative exact direct solver paradigm that does not 
(entirely) rely on such “black-box” libraries, yet it can produce up to an order of 
magnitude less memory than those state-of-the-art solvers on problems discretized 
with unstructured tetrahedral tangential vector finite elements. More importantly, 
the proposed direct solution approach lends itself perfectly to parallel, distributed 
and heterogeneous CPU-GPU computing, paving the road for massive high-
performance computing (HPC) direct solutions for FEM. 
 
Drawing from our experiences in the area of iterative domain decomposition 
methods and advances in integral equation (IE) methods we will develop a direct 
domain decomposition method (D3M) that instead of leveraging sparse matrix 
techniques that strive to minimize fill-ins, relies on smaller but partially dense 
matrices that strive for maximal data locality. Early results on 3D unstructured 
tetrahedron meshes and arbitrary volumetric geometries suggest that the proposed 
approaches can significantly outperform state-of-the-art sparse direct solvers in 
terms of memory usage while maintaining competitive serial implementation run 
times. Results of parallel implementation runs on multicore and distributed 
platforms will also be presented.  
 
 
 


