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Abstract—Huygens’ unit cells have demonstrated great ver-
satility and they are used in a widespread of applications for
their ability to manipulate electromagnetic wavefronts at will.
Common applications include: electromagnetic-wave refraction,
focusing, defocussing and beam conversion. They can achieve
these multitude of applications with no or extremely low reflection
losses. This paper investigates the possibility of also achieving a
wide matching bandwidth from a Huygens’ unit cell. This is
enabled by leveraging on the equivalence between Huygens’ unit
cells and lattice networks which in turn can be designed for
an all-pass response. Based on this equivalence, conditions on
achieving a similar all-pass response from a Huygens’ unit cell
are derived. A case study of a wire-loop Huygens’ unit cell is
presented validating these conditions with full-wave analysis and
providing an extremely wide matching bandwidth.

I. INTRODUCTION

Huygens’ metasurfaces can be engineered to manipulate
electromagnetic wavefronts at will [1], [2]. They can be
designed for many applications such as electromagnetic-wave
refraction, focusing, defocussing and beam conversion among
other applications [3]. They comprise electric and magnetic
current sheets that are suitably weighted by the incident
field depending on the application of interest. Typically, these
current sheets are implemented as passive surface impedances
[1], [2]. However, active implementations of these current
sheets have also been proposed in the literature [2].

This paper investigates the characteristics of the match-
ing bandwidth of Huygens’ unit cells by leveraging on the
equivalence between them and lattice networks [4]. It is well
established that lattice networks of different orders can achieve
an all-pass response. Hence, this paper poses the question
whether or not an equivalent Huygens’ unit cell can also
provide an all-pass response. Such an all-pass type of response
would achieve the best possible matching bandwidth.

II. EQUIVALENCE BETWEEN A HUYGENS’ UNIT CELL AND
A LATTICE NETWORK

A general depiction of a Huygens’ unit cell and a lattice
network are shown in Fig. 1. An equivalence between them
has been established in [4]. The equivalence shown is between
the E/H boundary conditions across a Huygens’ unit cell and
the terminal V/I relations across a lattice network where the
two relations have a one-to-one correspondence. It can be
stated as Z1 = Zm/2 and Z2 = 2Ze where Zm/Ze are the
magnetic/electric surface impedances of the wires/loops and
Z1/Z2 are the series/shunt impedances of the lattice network.
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Fig. 1. A Huygens’ unit cell and the equivalent lattice network.

This established equivalence raises the important question
whether or not it is possible to engineer a Huygens’ source
that is all-pass in nature similar to an all-pass lattice network.

III. THEORY FOR AN ALL-PASS RESPONSE FROM A
LATTICE NETWORK

The S-matrix of the lattice network in Fig. 1, referenced to
a port impedance of Zo, is given by:
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where ∆Z = (Z1 + Zo) (Z2 + Zo). An all-pass response from
a lossless network requires S11 = S22 = 0 and S12 = S21 =
ejφ where φ is the required phase delay. Applying these two
requirements on [S]LN results in the following conditions on
Z1 and Z2:
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The first condition guarantees the all-pass response whereas
the second controls the phase delay provided that the first one
is satisfied.

IV. INVESTIGATION OF ALL-PASS RESPONSE OF A
WIRE-LOOP HUYGENS’ UNIT CELL

The equivalence between the lattice network and the Huy-
gens’ unit cell can be applied to the conditions in (2). This
results in the following conditions on the surface impedances
of the Huygens’ unit cell:
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2
√
Ze −

√
Zm

2
√
Ze +

√
Zm

= ejφ (3)

It is observed from the first condition that the electric and
magnetic surface impedances Ze and Zm are required to be
duals to each other at all frequencies and balanced to Zo for
a true all-pass response to be achieved.



It is proposed to employ a wire-loop pair as a Huygens’
unit cell and operate them around their first resonances. The
first resonance of a finite wire is a series resonance which
can be modeled as Ze = jωLe − j/ (ωCe) as depicted in
Fig. 2a. On the other hand, the first resonance of a slotted
loop is a shunt resonance which can be modeled as 1/Zm =
jωCm − j/ (ωLm) as shown in Fig. 2b.

A Huygens’ unit cell operated at the first resonances of
the wire-loop pair can be modeled as a second order lattice
network as described by Fig. 2c. It is important to highlight
that the wire-loop pair can exhibit higher order resonances
that will perturb the required all-pass response at higher fre-
quencies and are expected to limit the bandwidth of operation.
Nevertheless, a significant bandwidth of operation is expected,
provided that the conditions of (3) are satisfied. Substituting
the second order lattice network model into the conditions
described in (3) results in:√
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where ωo is the resonance frequency of the superimposed wire-
loop pair. Thus, if the Huygens’ unit cell is designed so that
the first resonances of the wire-loop pair coincide in frequency,
the duality condition is directly satisfied in the vicinity of the
resonance frequencies. In addition, if the two resonators are
balanced to Zo, an all-pass response is expected.

A dogbone wire was simulated around its first resonance fre-
quency using the full-wave simulator HFSS. The S-parameters
response including copper losses are depicted in Fig. 3a (ref-
erenced to 377Ω). Similarly, a loop with a slit was simulated
using HFSS around its first resonance frequency. The S-
parameters response including copper losses are shown in Fig.
3b (referenced to 377Ω). It is observed that there is a higher
order resonance that is expected to perturb the Huygens’ unit
cell operation at higher frequencies.

The wire and loop were superimposed and the pair is
modeled as described by Fig. 2c. There was a slight change
in the extracted parameters values that can be attributed to
mutual coupling between the wire and loop. The full-wave
simulated S-parameters response is shown in Fig. 3 (referenced
to
√
L′
e/C

′
m = 97Ω). Indeed, an all-pass type of response is

observed for an extremely wide bandwidth of operation. This
all-pass response is limited at higher frequencies by the higher
order resonances of the wire-loop pair. Nevertheless, if these
resonances are also engineered to be duals and coinciding in
frequency, the conditions in (3) will be satisfied. This can
potentially extend the matching bandwidth even further.

It is also observed that the all-pass type of response was
achieved for a wave-port impedance of 97Ω. A higher wave-
port impedance could be achieved by loading the wire-loop
pair with reactances and/or optimizing the dimensions and
shape of the pair.

It should be pointed out that a pair of dogbones can
provide a similar frequency response. However, the electric
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Fig. 2. Circuit model of a finite wire, a loop and a wire-loop pair.
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(c) Wire-Loop Pair

Fig. 3. S-parameters of a finite wire, a loop and a wire-loop pair generated
using Floquet ports and periodic boundary conditions.

and magnetic resonances are hard to tune independently to
achieve an all-pass response [5].

V. CONCLUSION

In this paper, conditions on achieving an all-pass response
from Huygens’ unit cells have been derived. These are simply
achieving a dual response between the electric/magnetic sur-
face impedances and balancing them for a particular wave-port
impedance. This was demonstrated by employing a wire-loop
Huygens’ unit cell. The full-wave simulations demonstrated
that an all-pass response is possible with a wide matching
bandwidth.
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