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Fig. 1. A metallic shield with an inhomogeneously filled slot.

Abstract—Extraordinary transmission through an inhomoge-
neous dielectric loaded slot in a an infinite metallic shield of
finite thickness is demonstrated. We show that frequency intervals
between resonances can be controlled by introducing a region of
different dielectric constant within the slot.

I. INTRODUCTION

Transmission through an infinite dielectric-loaded slot in an
infinite metallic shield of finite thickness has been intensively
studied by many authors [1]-[8]. Understanding the single
element behavior is vital to understanding the behavior of
a periodic array of such slots, such as might serve as an
array antenna, or (nowadays) as a metasurface [9]. Such a
structure has been treated previously using an integral equation
with a mode-series expansion [1], [5], [7], [8], and via an
equivalent circuit admittance model [2]-[4]. Most previous
works have focused their attention only on the case where
the slot is homogeneously filled with dielectric. In this paper,
we introduce a region of different dielectric permittivity within
the slot, and obtain an analytical formula for the transmission
factor of the slot. Our analysis reveals that the thickness and
location of the gap within the slot, as well as the dielectric
constant of the substance that fills the gap, can control the
separation between resonances.

II. DERIVATION

Let an H-polarized electromagnetic wave be obliquely inci-
dent at an angle θ to a single inhomogeneous dielectric-loaded
slot of width 2b in a perfectly conducting metallic shield of
finite thickness a as shown in Figure 1. The slot consists of
three layers of different thicknesses where 1st and 3rd layers

of thickness a1 and a3−a2 respectively are filled by a medium
with relative permittivity εr1 and the layer in the middle of
thickness a2 − a1 is filled by one with εr2. We begin with an
integral equation formulation with a mode-series expansion as
used in [1]. The magnetic field is expressed as:
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where α = sin θ, γ = cos θ (θ being the angle of incidence),
u = y + b, hm =

√
k2εr1 − (πm2b )2, gm =

√
k2εr2 − (πm2b )2,

εr1 < εr2, and Am, Bm, Cm, Dm , Em and Fm are
amplitudes of parallel-plate waveguide mode m in the various
regions of the slot, related to reflection and transmission
coefficients at the interfaces. Applying boundary condition of
continuity of function Hx and 1
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∂z where k̃ = k
√
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interfaces between the dielectrics within the slot (|y| < b) at
z = −a1 and z = −a2, we can obtain Am, Cm, Dm and Fm
in terms of Bm and Em:
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next apply the boundary condition ∂Hx

∂z = 0 at surface of the
metallic shield and continuity of Hx and 1
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∂z at the slot
surfaces. Defining x̃±(ζ) = [a(ζ) ± d(ζ)]

√
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and ζ are Fourier transform variables with respect to y, we
arrive at the integral equations:
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For normal incidence (θ = 0), we assume that kb

√
εr1 < π,

which ensures that all higher-order parallel-plate waveguide
modes besides the TEM (m = 0) are cutoff. Retaining only
the m = 0 terms in (2), we get a degenerate-kernel integral
equation whose solution can be found by well-known methods:
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kb � 1 [1] and lnφ = 3
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Euler’s constant. Now we can determine the magnitude of the
transmission through the infinite dielectric slot. Following the
method of [7], we define the (amplitude) transmission factor
as:

TF =
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=

1
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having used (3) to obtain the final formula.

III. RESULTS

As perhaps the simplest example, we assume that the gap
is symmetrically located (a3 − a2 = a1), and take a shield
thickness a3 = 4 mm, a slot width 2b = 2 and a2 = 2.3 mm,
with εr1 = 50 and εr2 = 1 (air). A comparison among the
result of equation(4), the analytical result for the case of no
gap [7], and a full-wave finite-element simulation using Ansys
HFSS is shown in Figure 2. The results show that introducing
a gap within the slot will shift the even-order resonances to
higher frequencies while keeping odd-order resonances almost
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Fig. 2. Transmission Factor TF of homogeneous and inhomogeneous
formula, a3 = 4 mm, b = 1 mm and gap=0.6 mm

unchanged. Increasing the size of the gap will shift the even-
order resonances to progressively higher frequencies until they
meet the next odd-order resonances, which will be shifted to
higher frequencies but at a rate much slower than for the even-
order resonances, eventually forming new resonances which
will keep moving to higher frequencies as the size of the gap
is increased. Because the gap is introduced in the middle of
the slot in our example, the field of the odd-order resonances
is almost zero at that location, but is at a maximum for even-
order resonances, which explains why the impact of the gap
on the latter was larger.
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