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Abstract—The theoretical framework in MRI applications of
signal-to-noise ratio (SNR) calculation is formulated for 1) SNR
within a lossy elliptical cylinder excited by arbitary surface coils
using dyadic Green functions and, 2) ideal current distribution
corresponding to Ultimate Intrinsic SNR. The scattering problem
of the infinite cylinder is solved by eigenfunction expansions.

I. INTRODUCTION

MRI surface coils are widely useful to obtain images and
spectra from tissues close to them for their high signal-to-noise
ratio (SNR). In this work, regardless of imaging parameters,
the intrinsic SNR of an arbitrary surface coil is calculated
for an infinitely long homogeneous dielectric elliptical cylin-
der with losses. A general approach to computation of the
intrinsic SNR using the reciprocity principal and the Poynting
vector was developed in [1] for a circular cylinder case. We
follow that approach to derive the intrinsic SNR with mode
expansions of dyadic Green functions in elliptic cylindrical
coordinates. Transformations between angular Mathieu func-
tions with different complex parameter q is applied since
the orthogonality relations of Mathieu angular functions are
not valid across the boundary, where the medium property
changes.

To obtain this theoretical best possible SNR independent of
any particular coil geometry, i.e. the ultimate intrinsic SNR
(UISNR) introduced in [2], we maximize the SNR expression
by finding the optimum series expansion coefficients of a
generic surface current distribution. An earlier work was done
in [3] for a circular cylinder case.

II. ANALYTIC SOLUTIONS OF SNR
A. Signal and Noise Calculation

For an arbitrarily located magnetic dipole M1 located at r′

within the cylinder shown in Fig. 1 and a current source J2

outside the cylinder, by assuming a unit current flowing in the
coil, we use the reciprocity principle to find the signal

−jωµ0M1(r′) ·H2(r′) = −jωµ0

∫
S

H1(r) · dS (1)

and the Poynting vector for power losses in the tissue

Pl =
σ

2

∫
V

E2(r) ·E∗2(r) dV (2)
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Figure 1. Cross section of the elliptical cylinder with a boundary at u = u0

Thus, the SNR at any point within the cylinder is writen as

SNR(r′) =
|ωµ0M1(r′) ·H2(r′)|√

8kT∆fPl

(3)

where k is Boltzmann’s constant, T is the tissue’s absolute
temperature, and ∆f is the noise bandwidth.

B. Fields Calculation
The primary magnetic field set up by M1 in the region us <

u < u0 is found by introducing the dyadic Green function

Hp(r) = k2G(r, rs) ·M1(rs) =
∑
m

jk2
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where M
(2)
e
om

(q, h) and N
(2)
e
om

(q, h) are vector wave functions in
terms of Mathieu functions in [4], h is the component of the
wave vector k along ẑ, q = (k2 − h2)d2/8 is the parameter
of the Mathieu equations following the notation in [5], and
Ae

om(us, vs, h) and Be
om(us, vs, h) are known coefficients

w.r.t. M1(rs). We use the unknown coefficients, Ce
om, De

om,
ceom, and deom, to represent scattered fields Hs(u < u0) and
outgoing fields H1(u > u0) as

Hs(r) =
∑
m

(
Ce

omMe
om(q, h) +De

omNe
om(q, h)

)
(5a)
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The boundary conditions at u = u0 consist of H × n̂
and E× n̂ in the Fourier domain, which decomposite into v̂
and ẑ components. Moreover, each component can be separate
into cosnv and sinnv modes by converting angular Mathieu
functions of parameter q0 to ones of q based on [6] as
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where αe
om,r and βo

er,p are known coefficients of the projection
with a basis of Mathieu functions to avoid point-matching
method. Thus, eight equations in total at u = u0 are required
to solve 8 unknown coefficients for each m. Four equations
along ẑ can be rearranged to obtain the transmission/reflection
relation as
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and substituted in the boundary conditions along v̂ as in (8)
for each value of p.

Noticing that the coefficients of H1, ceom and doem, are linear
combinations of Ae

om and Bo
em, which are known coefficients

given any dipole source M1(r′), we can remove the dot
product with M1(r′) on both sides of (1) to find H2. Then
the surface integral of H1 depends on the coil surface S.

III. IDEAL CURRENT DISTRIBUTION FOR UISNR

To estimate the UISNR, the theoretical highest possible
SNR regardless of coil geometry, we express the general SNR
in the forms of eigenfunctions to find the coefficients of current
distributions resulting in minimal power loss. Considering a
surface current along the surface consisting of two parts, a

divergence-free part and a curl-free part, we write its general
form with Mathieu functions and weighting factors Wn as

Kn(v, z) =
(
WM

n ∇× S
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e
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(9)
The fields inside the elliptical cylinder can be treated similarly
as

H2(r) =
∑
n

∫
Me

om(q, h)VM
n + Ne

om(q, h)V N
n dh (10)

where VM
n and V N

n are combinations of expansion coefficients
of the current desity pattern and boundary condition at the
surface in (7) and (8). The ideal current pattern Wi yields
the UISNR proportional to Wt

iS/W
t
iNW∗

i , where S is the
signal and N is noise covariance matrix from (1) and (2).

IV. FUTURE WORK

The next step will be deriving representations of optimal
surface current distributions for specific cylindrical window
coils around the lossy elliptical cylinder. A previous work
for a sphere and circular cylinder was presented in [7].
Also, numerical results for optimized current pattern will be
presented using ACM algorithm 934 in [6] to compute Mathieu
functions for complex values of q.
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