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Abstract—This work investigates a far-field quantity, known 

as the effective length, of one, two and three-dimensional arrays 
bound within circular constraints and its relation to the 
Fraunhofer region. Maximum gain is achieved for a volumetric 
array only when compared using the same effective length of 
linear and planar arrays. 

Index Terms—Antenna array and distributed beamforming. 

I.  INTRODUCTION  

A. Expected value radiation pattern 
The potential function in the far-field regime of an isotropic 

point source is denoted as Ξ (rn, ψn): 
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This potential function meets the Fraunhofer condition (r ≥ 
2D2/λ) and is independent of polarization as it behaves 
isotroprically in nature. Hence, the isotropic potential does not 
need to be multiplied by either of the constitutive parameters ε 
or µ as provided by the common electric and magnetic vector 
potential [1-3]. For a finite sized radiator, this is written as (2) 
where In is its amplitude excitation [1]: 
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The effective length relation of an antenna, whether linear 
or aperture, is a quantity to determine the voltage induced on 
the open-circuit terminals of the antenna when a wave 
impinges upon it. This vector quantity is represented by 



 𝑒𝑒ff 
(𝜃𝜃,𝜙𝜙) = ℓ𝜃𝜃 (𝜃𝜃,𝜙𝜙) θ̂  +ℓ𝜙𝜙 (𝜃𝜃,𝜙𝜙) φ̂ . In the near-field the radiated 
wave is spherical in nature such that the effective length of the 
antenna is uniform throughout. However, the far-field 
approximation is such that the radial term of the Green’s 
function Gr ≈ 0. Hence, a finite dipole aligned along the z-axis 
has the components, Gθ= - sin θ, Gr= Gφ =0 with an effective 
field angle |G| =sin θ = sin ψn.  

The total field of continuously distributed sources is simply 
the product of the element and space factors. The space factor 

is broken down into the product of its effective field angle and 
effective length (ℓeff). This is analogous to the pattern 
multiplication of distributed or discrete-element antenna 
arrays. 
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Fig. 1. Small dipole with exact solution of radiated fields 

(left). Far field approximation (right). 

B. Effective length calculation of a small dipole (λ << 50) 
A small dipole with uniform current excitation, co-

polarization, and neglible polarization disparity throughout its 
length oriented along the z-axis takes the form: 
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C. Effective length comparisons 
The volume, area, and effective length of the first four 

characteristic modes of the Sinc family (n = 0-4 ) [3-4]; 
spherical distributed array (SDA), circular distributed array 
(CDA) [5], linear distributed array (LDA), and ring distributed 



array (RDA) are provided in (6); note that not all 
configurations are applicable. 
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An SDA has an effective length approximately twelve times 
greater than the LDA and four times that of either RDA or 
CDA (provided λ=1). Solving for the effective aperture radius 
A allows a fair comparison of effective length such that: 

 
λ π λ π λ λ π= 3 28 2 2 2
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.  (6) 

An evaluation of the effective length of a SDA, CDA, LDA 
and RDA is given using two different methods. The first 
method bounds all topologies to the same aperture size (A=1). 
The second assessment compares the effective length such 
that ℓeff = 10 π  for all topologies. Results of each are provided 
respectively in Figs. 2 and 3. Numerical calculations (Tables 1 
and 2) show a comparison on the performance of each array 
type. Maximum gain is achieved for a volumetric array when 
ℓeff is equal for all arrays. However, when all aperture sizes 
(A) are set equal, the RDA performs best. 

II. ISOTROPIC RADIATOR DIRECTIVITY IN ANGULAR SPACE 
The total uniform and normalized far-field isotropic 

components Ξ (rn, ψn) emit a radiation intensity that is 
predominately real (depends on 𝜂𝜂) in its far zone region as 
provided by derivation of (8): 
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Hence, as long as 𝜂𝜂 is independent of angle, the directivity 
is uniform and equal to unity in all angular spaces for a single 
isotropic radiator. This grows to a value of N for a collection 
of isotropic radiators such that 
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where Aeff is the commonly accepted notation of the accepted 
effective area.  

Table 1. A = 1 and λ=1. 
 SDA CDA LDA RDA 
D0 17.15dB 21.95dB 16.26dB 22.37dB 
θ3dB 25.96° 36.45° 21.97° 30.46° 
φ3dB 26.46° 5.49° 22.47° 3.5° 
ASLθcut plane -29.30dB -28.35dB -18.59dB -16.15dB 
ASLφcut plane -23.26dB -29.37dB -18.57dB -26.97dB 

 
Fig 2. A=1and λ=1. SDA-top left; CDA-top right; LDA-

bottom left; RDA-bottom right. 
Table 2. Length = 10 π,  (5) for all topologies. 

 SDA CDA LDA RDA 
D0 15.28dB 12.24dB 6.62dB 13.63dB 
θ3dB 32.95° 83.38° 90.87° 69.40° 
φ3dB 32.45° 29.46° 91.37° 20.47° 
ASLθcut plane -29.25dB -22.10dB -8.62dB -11.19dB 
ASLφcut plane -29.13dB -28.04dB -8.62dB -23.12dB 

 
Fig 3. The aperture size A is solved independently for each 
topology in (5) such that ℓeff  = 10 π and λ =1. SDA-top left; 

CDA-top right; LDA-bottom left; RDA-bottom right.  
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