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Abstract—In this paper, we present an algorithm for tracing rays 

through an isotropic inhomogeneous medium with the aim to 

incorporate the algorithm in a lens synthesis technique based on 

Geometrical Optics and Particle Swarm Optimization (PSO). The 

algorithm tracks the phase, amplitude, and polarization variation 

of the electric field along the ray, which in this case becomes a 

space curve. The rays are found by solving the light-ray equation 

numerically using the Runga-Kutta to the 4th order (RK4) 

algorithm. Key governing equations are summarized allowing the 

implementation of numerical techniques for the complete 

determination of GO fields. Validation of the ray paths are given 

by comparing the numerical results with the analytic formulation 

of the ray paths in an ideal Luneburg Lens Antenna. The results 

show good agreement.     

I. INTRODUCTION 

Shaping dielectric lens antenna via an optimization based 
synthesis technique requires an efficient numerical program to 
analyze the lens performance for a given geometry and 
permittivity profile. The asymptotic technique of Geometrical 
Optics is a viable candidate. The efficiency of the method allows 
one to integrate it within a synthesis loop involving an 
optimization routine such as PSO. This technique makes use of 
the concepts of differential geometry to track the phase, 
amplitude, and polarization of the electromagnetic field viewed 
in the framework of rays (space curves) and wavefronts 
(surfaces). Two equations result from the asymptotic evaluation 
of the wave equation; the Eikonal Equation which can be solved 
to obtain the ray parameterization, and the Transport Equation, 
which can be solved to obtain the variation of the electric field 
along the ray. The key equations allowing numerical solutions 
are summarized in the paper by Yeh [4]. These results are 
implemented in a GO/PSO synthesis program to design shaped 
inhomogeneous lenses for spinning conically scanned beams. 
The validation of the program is an important step. Here we 
present validation for the ray paths by comparing the results with 
analytic results for the ideal Luneburg Lens [1]. Optimizations 
of both the surface expansion coefficients and the material 
permittivity coefficients for lenses is planned. This work is 
largely a continuation of the work presented in [1] except for the 
incorporation of capabilities of optimizing the lens 
inhomogeneity. 

II. GEOM. OPTICS FOR INHOMOGENEUOS MEDIA THEORY  

Fig. 1 shows a pictorial view of the procedure to trace rays to the 
aperture through an inhomogeneous lens. To obtain the aperture 
fields, the ray paths through the inhomogeneous lens must be 

 

Fig. 1. Schematic view of ray tracing through 
inhomogeneous lens to obtain aperture fields 

obtained. Here we summarize the key formulas necessary to 
determine the traced rays from the feed, through the 
inhomogeneous lens and to the aperture.  

A. Eikonal Equation Solution for Ray Path 

The Eikonal Equation can be recast into the light-ray equation 
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where n is the index of refraction, 𝑟 is the position vector of the 

ray, and s is the arc-length parameter. (2) can then be cast into 

the First Order ODE [2] 
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where 𝑑𝑠 = 𝑛𝑑𝑡 and 𝑇⃗⃗ is the ray tangent. (3) equation above 

can be solved by the Runga-Kutta method (RK4) [2]. RK4 

produces a series of points and tangent vectors along the ray. 



These are then interpolated using Cubic Spline Interpolation to 

obtain the full parameterization of the ray. The parameterized 

ray can then be integrated to obtain the Optical Path Length of 

the ray between two points on the ray A and B. Note, S is a 

function which defines the optical path length between some 

reference point and a point on the ray.  
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The numerical results of (3) are given in Section III for the ideal 

Luneburg Lens.  

B. Transport Equation for Fields 

The Transport Equation is 
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where 𝑒 is the electric field vector, 𝜇 is the permeability of the 

medium and 𝑡̂ is the unit ray tangent. (5) is solved in two parts, 

first for the amplitude variation and second for the variation of 

the direction [3]. To solve (5) for the amplitude, one multiples 

through by 𝑒∗ to form the magnitude of 𝑒. After some algebraic 

manipulation, one obtains 
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(6) can be used to follow the amplitude variation along the ray.  

Note, it is well known theorem in differential geometry that the 

∇ ∙ 𝑡̂  can be related to the mean curvature of the wavefront 

surface, namely 
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(6) can be modified to include this definition. Next, (5) is 

again solved for the variation of the direction of the electric 

field along the ray by dividing through by √𝑒 ∙ 𝑒∗ to form an 

equation describing the unit vector 𝑒̂ 

  ln
e

e n t
s


  


  (7) 

(7) can be used to follow the polarization of the electric field 

along the ray.  

III. RESULTS 

Results of RK4 numerical solution to (3) for the ideal Luneburg 

Lens is shown in Fig. 2a (in solid blue). The RK4 method was 

chosen for its algorithmic simplicity and accuracy. Overlaid on 

the same figure are the analytic results for the rays of an ideal 

Luneburg Lens (in dashed red) as given by the parametric 

equation [1] 
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where ρ and θ are the polar variables of the position vector of 

the ray defined from the center of the lens to a point on the ray 

and δ is the transmission angle of the ray measured from the 

lens axis to the tangent to the initial segment of the ray launched 

from the lens focal point as shown in Figure 2. 

 
Fig. 2. Definition of parameters describing ray trajectories in 

analytic formulation of (8) 

The results of Fig. 3a indicate the ray tracing algorithm of the 

developed code is working as expected. This code will then 

incorporate the results of Section II to follow the amplitude and 

polarization as part of a numerical synthesis code for shaped 

engineered material lenses as a follow-up to the work presented 

in [1]. For a simple verification of the entire program, a uniform 

amplitude electric field was forced in the projected aperture 

while keeping the true phase. The far field patterns are shown 

in Fig. 3b.  

 
Fig. 3. (a) left: Rays Traced by RK4 numerical technique 

(solid blue) and by analytic expression of (8) (dashed red). (b) 

right: Far field patterns with forced uniform amplitude in 

projected aperture. 
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