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Abstract—We discuss the extension of an exact charge-
conserving particle-in-cell (PIC) algorithm based on unstructured
grids to the relativistic regime. The present PIC algorithm is
based on the representation of grid-based variables such as fields,
currents, and (nodal) charges as discrete differential forms of
various degrees. In gather and scatter steps, Whitney functions
are used as spatial interpolators from grid-based variables to
kinetic variables. In the push step, Boris method is adopted
to efficiently incorporate relativistic effects into the particle
updates. Computational example of a plasma ball expansion
and synchrotron charge acceleration are used to illustrate the
proposed algorithm in the relativistic regime.

I. INTRODUCTION

Accurate and reliable electromagnetic (EM) particle-in-
cell (PIC) [1], [2], [3] algorithms based on time-dependent
Maxwells equations are needed in a number of problems,
including the analysis and design of beam-wave interaction
structures. Historically, EM-PIC codes have been based on
the finite-difference (FD) method and regular grids. However,
complex geometries cannot be accurately modeled by regular
grids because of ensuing staircase effects. For geometrical
flexibility, unstructured (irregular) grids should be employed
instead. The finite-element (FE) method is a preferred choice
in this case because it naturally conforms to such geome-
tries [4]. FE also enables a more seamless multi-physics
integration with thermal solvers. However, conventional PIC
algorithms on irregular grids violate charge conservation be-
cause the ensuing continuity equation leaves residuals at the
discrete level. As such, there has been a longstanding need for
a conservative full-wave EM-PIC algorithm on unstructured
grids. Efforts along this direction have included correction
potentials or pseudo-currents. The former approach requires
a time-consuming Poisson solver (especially in complex ge-
ometries) at each time-step and the latter introduces a dif-
fusion parameter that may alter the underlying physics. A
recent charge-conserving full-wave PIC algorithm that does
not require introduction of correction terms was proposed
in [5]. However, this algorithm is based on the second-order
vector wave equation for the electric field, with solution space
including spurious modes of the form ∇φ, which are not
physical admissible field solutions to Maxwells equations and
can pollute the numerical results. More recently, a novel
exact charge-conserving, non-relativistic PIC algorithm for
unstructured grids was introduced in [6] based on the use of

Whitney forms [7], [8] as self-consistent charge and current
interpolants for the scatter step. Similar methodologies were
discussed in [9], [10] as well. Here, we briefly describe the
extension of the algorithm presented in [6] to the relativistic
regime. The extension is based on the use of the Boris method
[11] to introduce a modified velocity parameter incorporating
the relativistic factor. We provide computational examples to
show that exact charge-conservation on unstructured grids is
retained in the relativistic regime.

II. RELATIVISTIC PIC FORMULATION

The overall time-update procedure for the PIC algorithm
is carried out according to the following sequence [6]: (1)
magnetic flux density B update; (2) gather step; (3) parti-
cles’ positions and velocities update; (4) scatter step; and
(5) electric field E update. By representing the fields in
terms of differential forms [12], [13], the E and B fields
are spatially discretized using Whitney 1-forms and 2-forms
based on edges and faces of the grid, respectively. Likewise,
the Hodge-dual of the current density J is represented as
a 1-form defined on the edges of the grid. By applying
a leap-frog time integration to the semi-discrete (spatially
discretized) Maxwell’s equation, we obtain full-discrete equa-
tions of the form [14]: bn+ 1
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where b (face-based), e (edge-based), and i (edge-based) are
the degrees-of-freedom (DoFs) for B, E, and J, respectively,
∆t is the time-step interval and, C is the incidence matrix of
the grid [7], and [?ε] and

[
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]
are matrices representing

the discrete Hodge star operator [7], [15]. The superscript
denotes the time step index. As explained in [6], field values
are interpolated at particles’ positions in the gather step by
also using Whitney functions. In the relativistic regime, we
incorporate Boris algorithm into particle updates as follows.
We introduce a modified velocity defined as up = γpvp
where for the p-th particle the relativistic factor is given by
γp = (1 +

∣∣vp/c2∣∣)−1/2, where vp is the particle’s velocity
and c is the speed of light. We perform the particle push via
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where rp is the

particle position. In the scatter step, we again use Whitney 0-
form and 1-form as interpolatory functions, this time to assign
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Fig. 1: Snapshots for plasma ball expansion. (a) t = 40∆t. (b)
t = 120∆t. (c) n = 200∆t. (d) n = 280∆t.

particles’ charges and currents onto nodes and edges of the
grid, respectively [6].

III. COMPUTATIONAL EXAMPLES

We first consider the expansion of a plasma ball consisting
of 40,000 electrons with Maxwellian distribution and thermal
velocity 0.3 × c at the initial state. Fig. 1. illustrates snap-
shots of plasma ball expansion for different time instants as
indicated, with ∆t = 1 ns. By computing the nodal charges a
various grid nodes, charge conservation is verified at all time
steps.

The second example presented deals with a relativistic
synchrotron, where a particle is guided along a quasi-circular
trajectory by external applied fields. Because the mass of the
particle increases as the velocity of the particle approaches
the speed of light, the frequency of external RF electric field
should be modified according to the relativistic factor to match
the varying period of motion. Fig. 2 shows the trajectory of
the charged particle in the relativistic synchrotron case. It is
seen that by applying the RF field in the proper synchronized
fashion, the quasi-circular trajectory is obtained is retained the
relativistic regime.

IV. CONCLUSION

We have extended a charge-conserving PIC algorithm on
unstructured grids [6] to the relativistic regime. A modified
particle update is implemented based on Boris algorithm
to incorporate the relativistic factor in a consistent fashion.
Examples including a plasma ball expansion and a relativistic
synchrotron have been included to illustrate the proposed PIC
algorithm.

Fig. 2: Trajectory of an electron for relativistic synchrotron
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