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Abstract—Radio frequency interference obscures weak radio 
astronomy sources and complicates imaging the Universe; such 
interference from Earth-orbiting satellites has become pervasive.  
Prior linear approaches required estimation of the interference 
subspace, which can be highly dynamic and challenging.  This 
paper develops a non-linear approach, which statistically 
eliminates certain strong interference signals without estimating 
the interference subspace across an M-element phased-array 
telescope.  This new approach could supplement other linear 
processors; it does not distort beam patterns or consume spatial 
array degrees of freedom.  The interference and desired signals 
can completely overlap in time and frequency with this non-
linear approach.  Algorithm performance with an M-element 
array statistically eliminates common strong interference sources 
but increases the thermal noise by 3dB.  

I. INTRODUCTION 

Given such powerful interference sources and such 
sensitive radio telescopes, the signal-to-noise ratio for an 
undesired satellite signal might reach +20dB, or much greater, 
even in a radio telescope side-lobe.  Hundreds of phased array 
antenna elements, such as the ASKAP telescope’s 188-
elements, empower radio astronomers to mitigate radio 
frequency interference [1].  Nonetheless, side-lobe interference 
is difficult to model and calibrate; the signal across a phased-
array feed to a parabolic dish antenna might appear to have 
completely random phase that evolves over time.  Linear 
approaches estimate the interference subspace spatially to 
mitigate interference using projections [1].  Non-linear 
approaches, such as temporal or frequency excision, can help 
mitigate strong interference but can cause problems with 
missing data; this issue is most prevalent when the desired and 
interference signals overlap completely [2].   

Another non-linear technique is intriguing because there is 
no need to estimate the interference’s spatial signature and the 
interference can completely overlap the desired signal in time 
and frequency.  This non-linear approach operates 
independently from all other processing, so it could supplement 
other phased-array linear interference mitigation techniques, 
which subsequently mitigate any weaker, and more 
challenging, interference sources [1].  This non-linear 
implementation has relatively low computational complexity, 
and does not necessarily require modifying other telescope 
hardware or software.  Unlike other excision approaches, the 
new technique also works if the strong interference and the 
weak astronomy signal completely overlap, overcoming 
missing data challenges [3].  Unlike linear spatial approaches, 
this approach can also eliminate interference when each 
antenna receives a completely uncorrelated strong interference 
signal.  Most importantly, M-element arrays using this non-

linear approach can eliminate certain strong interference 
signals, completely, and still deliver array-gain.  However, the 
technique effectively increases the thermal noise by 3dB.   

This paper generalizes an earlier single-antenna, single-
polarization, non-linear interference mitigation technique [3].  
First, the performance analysis with one antenna is expounded 
to show that, as an ensemble average, the expected value of the 
desired signal phases are unperturbed by these non-linear 
operations. Then, using this result as a foundation, performance 
is generalized from a one-element antenna to an M-element 
array with arbitrary arrangement and polarization to highlight 
the performance benefits and consequences.   

II. SINGLE ANTENNA BACKGROUND  

Consider a time-series signal, r[n], consisting of discrete 
samples which are the sum of some strong interference signals, 
s[n] with phase s[n], the desired weak signals, d[n] with phase 
d[n], and independent complex-valued additive white 
Gaussian noise, w[n], with zero-mean and variance 22. 
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Each component might consist of several signals; there are 
Ks strong interference signals, and Kd weak desired signals, and 
each component has an envelope k[n] and phase k[n]: 
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Decomposing the Gaussian noise into a real-part and an 
imaginary-part, wR[n] and wI[n] respectively, which are 
independent with zero-mean and variance 2 each, yields (4). 

                        niwnwnw IR                         (4) 

The input signal to noise plus interference ratio equals: 
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III. POLAR EXCISION BACKGROUND 

Polar excision, where polar refers to a representation in the 
complex-valued IQ signal plane, first decomposes the signal 
into a magnitude and phase portion.  The algorithm transforms 
magnitude samples into the frequency domain, which is non-



linear because the magnitude operator precedes the FFT, and 
excises them according to an algorithm [3].  Transforming the 
excised magnitude bins back into the time-domain, and 
recombining with the unmodified phase samples forms a 
complex-valued time-series signal.  For processing details, see 
[3].  This referenced paper considers the sign of the output 
signal in detail, since that paper was concerned with BPSK as 
the weak desired signal.  More generally, expounded equations 
for this processor are necessary to explain the output signal 
phase, and the statistical performance with M-element arrays.   

IV. EXPOUNDING SINGLE ANTENNA PERFORMANCE 

When the strong interference presents distinct features in 
the transform domain, the polar excision output signal 
approximately equals p[n]: 

             ni
ds

senwnnndnp   cos       (6) 

The noise term, w’[n], is directly related to the original noise 
samples: 

 

                      nnwnnwnw sIsR  sincos      (7) 

 
Most noteworthy, the phase of p[n] is dependent upon the 
strong interference signals.  When the strong interference 
phase varies quickly, an ensemble average approximates this 
practical scenario; assuming the interference phase angle, 
s[n], is independent and uniform on [0, 2) yields the 
expected value, integrated with respect to s[n] in (8).    
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The desired signal phase angle is preserved, and the desired 
signal-envelope is halved.  Sampling the noise only along the 
phase s[n] halves the noise variance.  The processor delivers 
an output signal to interference plus noise ratio: 
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This scenario eliminates the strong signal interference, and 
penalizes the SNR by 3dB, when compared to a case with no 
interference. 

V. GENERALIZATION TO M-ELEMENTS 

Next, the approach is generalized to M-elements.  The mth 
array element signal equals: 
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The noise at each element is complex-valued and independent 
with zero-mean and variance 22.  Each signal component 
now has an additional term that models the phase angle at each 
array element versus time, k,m[n].  One signal could consist of 

multiple components to overcome the quasi-monochromatic 
modeling assumption, and the signal magnitudes can vary 
between antennas or sites: 
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Each element will undergo an independent polar excision: 
                 

             nwennndnp m
ni

mdmsmm
ms  ,

,,cos 
(13) 

     nmi
mm

senwnw ,                         (14) 

A processor will then compute the intensity toward a 
particular desired source component in the astronomy 
image.  A simple processor might apply (15) where an 
unknown, but constant, receiver phase offset  exists. 
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When s,m[n] is independent across the m-array elements, 
then: 
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Assume the other points in the desired astronomy scene are 
spatially orthogonal to this point and that the desired signal 
has the same amplitude at each antenna element.  Neither 
assumption is necessary, but these assumptions simplify the 
signal to interference plus noise ratio expression to illustrate 
the performance characteristics in (17).   
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In summary, the output signal to interference plus noise 
ratio improves with the number of elements, M.  The strong 
interference vanishes, albeit the thermal noise increases by 
3dB.   
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