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1. INTRODUCTION 
 

The Finite Element Method (FEM) is a powerful approach to the numerical solution 
of electromagnetic scattering and/or radiation problems [1]. The computational domain is 
decomposed into a number of elements of simple shape over which the unknown field 
quantities are represented in terms of pre-defined basis functions. The matrix equation, which 
results from the weak variational formulation, turns out to be sparse, which enables the 
utilization of effective direct or iterative matrix solution algorithms [2]. 

 
It is well-known that the element size in FEM formulations depends on the 

wavelength λ , and a generally accepted ‘resolution rule’ is to construct a mesh containing 
approximately ten nodes per wavelength for an accuracy of 1 % in the solution. As a result, 
for relatively high frequency applications, the number of degrees of freedom may become 
prohibitively large, and the numerical calculation may be unmanageable even with very 
powerful computers.  

 
Iterative solution algorithms are well-suited for the solution of sparse FEM matrix 

equations, but in most cases the algorithms converge very slowly [3]. Preconditioners can be 
devised to circumvent this difficulty, but this is not an easy task in general. Despite these 
difficulties encountered in iterative solution techniques, direct approaches (designed for 
sparse matrices) are also not applicable in problems with a large number of unknowns, due to 
the limitations in computer storage and speed. Domain decomposition methods [4] have been 
introduced to handle large matrix equations resulting from the discretizations used in the 
finite methods. The basic idea in domain decomposition approach is to decompose the 
computational domain into a number of smaller subdomains. Then, the subdomains are 
treated as if they are ‘isolated’, and the subdomain couplings are further added via a direct or 
iterative algorithm. An attractive aspect of these methods is their implementation on parallel 
machines. 

  
The method described in this paper resembles the domain decomposition method, 

but it exhibits some distinctive differences in the implementation. The computational domain 
(composed of the FEM mesh) is subdivided into a number of subdomains and a hierarchical 
class of characteristic basis functions (CBFs) are evaluated. The computation of the CBFs is  
based on the physics of the problem, since they are computed via the couplings of the 
subdomains. The hierarchical structure is based on the order of the couplings, as will be seen 
in the derivation of the algorithm. 
 

2.  CONSTRUCTION OF THE CBFs 
 

In order to illustrate the algorithm, we start with a simple model problem, which is  
the construction of the two-dimensional Green’s function where the partial differential 
equation is the well-known Helmholtz equation, as given below: 
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and the solution is given by )()4/()( 2

0 rkHjru rr
= . Let Ω  be the computational domain 

shown in Fig. 1. By using the symmetry in the problem only one-fourth of the real computational 
domain is used. In the free-space region FSΩ ,  satisfies the equation given above,  and in the 

region occupied by the PML (  ), the partial differential equation is given by: 
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where the matrix [  and the parameter ]Λ γ  are related to the properties of the PML medium. 
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Fig. 1 The computational domain with Two Subdomains 

 
For the sake of simplicity, two subdomains are defined in the computational domain as  

 and Ω  as shown in Fig. 1.  The finite element matrix becomes a matrix 
with 4 submatrices, and the discretized system can be written as: 

FSΩ=Ω1 PMLΩ=2
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Since the point source is located at the origin, the right hand side vector is nonzero only in the 
domain . 1Ω
Now, define the vectors  as follows (the superscript j

iv j  denotes the step number and the 
subscript  denotes the subdomain) i
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• , v  (These are the secondary basis 

vectors) 
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• , v  (These are the 

third-order basis vectors) 
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It is evident that higher order basis vectors can be evaluated by using this algorithm. It should be 
noted that the zero vectors are discarded, which implies that only a single basis vector is added at 
each step. Therefore, we define the vectors , jw SNj K,2,1=  as follows ( denotes the 

number of steps): 
SN
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Then, we express the solution x  as: 
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To evaluate the unknown coefficients we form the matrix equation: 
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3.  NUMERICAL RESULTS 
 
The computational domain  is the square Ω { }20,20),( 2 ≤≤≤≤ℜ∈ yxyx and the 

wavenumber is chosen as π=k . The free space region FSΩ  is the square 

{ }10,10),( 2 ≤≤≤ℜ∈ xyx

PMLΩ

≤y  and the remaining part of the domain is the PML region 

. 
 
We define the solution of the FEM equation (without partitioning) as  and the solution 

obtained by partitioning as  ( DD  stands for domain decomposition). We define the 
percentage error as: 
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We consider domains with different mesh-sizes, as follows: 
 

1. The FEM mesh contains 256 nodes (mesh-size 15/.2=h ) 
2. The FEM mesh contains 961 nodes (mesh-size 30/.2=h ) 
3. The FEM mesh contains 2116 nodes (mesh-size 45/.2=h ) 
4. The FEM mesh contains 3721 nodes (mesh-size 60/.2=h ) 
 

Table 1. Performance of the algorithm with different mesh sizes. 

SN  (%)e  
256 nodes 

(%)e  
961 nodes 

(%)e  
2116 nodes 

(%)e  
3721 nodes 

2 84.53 87.94 89.45 89.64 
3 49.99 54.20 55.33 56.09 
4 43.02 50.00 52.18 53.70 
5 11.32 21.49 24.83 29.08 
6 6.54 16.57 20.49 25.12 
7 1.93 7.08 10.82 15.41 
8 0.71 4.26 7.39 11.47 
9 0.22 1.96 3.69 6.35 

10 0.04 1.04 2.34 4.39 
11  0.57 1.39 2.65 
12  0.25 0.77 1.71 
13  0.13 0.46 1.02 
14  0.05 0.23 0.63 
15   0.15 0.42 
16   0.06 0.24 
17    0.15 
18    0.12 
19    0.10 
20    0.08 

 
 
We observe that the number of basis vectors increases only slightly when the mesh-size is 
reduced. We have also found that the same is true when the size of the problem is increased while 
leaving the mesh size unchanged, i.e., the number of CBFs grow very slowly with the increase in 
the size, enabling us to solve large problems directly without resorting to iteration.  
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