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1. INTRODUCTION

This paper deals with design-oriented analysis based on matrix compression techniques for large
array antennas. We will consider arrays with planar radiating elements metalized on dielectric
stratification (“printed” arrays of patches, slots, etc.), or made of non-planar conductors in air (with
or without backplane), as well as waveguide-based aperture arrays. Reflectarrays, though not
explicitly mentioned, are typical applications for both classes.

Array modeling issues are challenging, since they involve large (in terms of the wavelength)
structures, but also fine details that require much-smaller than wavelength discretizations, and that
dominate the frequency response of input parameters. The Integral Equation (IE) approach is largely
used to attack these problems, through the Method of Moment (IE-MoM) discretization scheme. It is
well known, however, that standard techniques are severely limited by the matrix size and condition

number involved in the problems of interest. In
these problems, the structure of the solution exhibits
very different scales of variation; for examples,
local interactions in a geometry, like sub-
wavelength details, edges and discontinuities,
generate small-scale details of high spatial
frequency, while distant interactions as well as
resonant lengths are responsible for the low-
frequency, slow spatial variations. One is typically
forced to choose mesh cells of size comparable to
the smallest foreseen scale of the solution, that is,
with the highest possible spatial resolution, or
likewise if waveguide modes are used as expansion
functions. Unfortunately, this leads to a large
number of unknowns, densely populated MoM
matrices with a poor condition number, and renders
the direct approach of large problems numerically
intractable. A number of techniques have been
presented in the past years to overcome the above

difficulties, whose review is outside the scopes of this work. It is however interesting to note that for
conductor-based (EFIE) problems, typical problems of interest were in the area of RCS prediction;
in these applications (e.g. [1]), the solution is less beset with the problem of conditioning that arises
with sub-wavelength details, and associated difficulties with iterative solvers. We also note that for
large arrays of apertures which exhibits periodicity or quasi-periodicity of geometry and excitation,
the infinite-extension approximation has been customarily applied, with or without the refinement of
“windowing” to account for its finite extent (e.g. [2]). Among all the techniques we will illustrate in
details two ones, recently developed in Italy, which are framed in the category of  matrix
compression, but at a different level of schematization and typology of tractable arrays.

2. THE SYNTHETIC FUNCTION METHOD

In the Synthetic Function eXpansion (SFX) method [3, and references therein], the structure is
broken down into “blocks” (e.g. radiators), and block-global basis functions are obtained on them,
that are subsequently used as basis functions in the array analysis. These, called “synthetic
functions” (SF), include the small-scale details of the solution, while they are compactly accounted
for at inter-element coupling. Few SF are required to correctly represent the current on blocks, and

Fig. 1 Array of patches Frequency response of
|S11|. Comparison between rooftop basis and
DIS-MR scheme+sparsification.
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thus the SFX approach reduces the MoM
matrix memory occupation, and considerably
reduces the time needed to solve the linear
system, without affecting the solution accuracy.
The SFs are generated numerically from the
solution of the stand-alone block structure with
appropriate excitation, basing on the
equivalence theorem and the limited degrees of
freedom of the solution [4]. When computing
the interactions of SF on different blocks, the
discretization detail can be reduced, leading to
a further increase in numerical efficiency.
As an example of application, consider the 4x2
patch array (with BFN) shown in the inset of
Fig.1. For this structure, each pair of cascaded
patches is a block; deviations below 1% at all
frequency points are found in the frequency
response of S11 when 6 SFs are employed on
each block. In these conditions, memory
occupation (at all steps of the process) is about
1/20th of that required by a conventional
approach, and the linear system solution (with
all overhead included) is about 1/10th of the
standard approach. The SF concept has been
applied to arrays of apertures [5]; in this case,
waveguide modes are used on apertures, and
spatial frequency scales are directly related to
modal indices. An example of application for
this latter case is shown in Fig. 2. It is
concerned with an array of 40X40 H-plane
sectoral stepped horns. The synthetic basis
function (called here synthetic aperture
function, SAF [5]) have been generated by
using waveguide mode in isolation excited by
the “natural mode” (i.e., the one that feed the
element in the actual configuration), plus
external excitations to simulate  the symmetry
breaking due to the array environment. The
SAF have been generated in terms of  TE and
TM mode expansion at the apertures, thus
resulting into a compression from a
conventional TE-TM MoM matrix of 30-60%.
Results for the Sij scattering parameters are
presented in Fig. 2 which are obtained with 8
and 14 SAF; results for comparison are
obtained by a conventional  solution  obtained

using 21 waveguide modes for every aperture (accepting the results with 8 SAF, the matrix is
compressed from 840X840 to 320X320). The improvement of calculation time is evident: to obtain
the result in Fig. 2 for a single frequency point by using with 8 SAF, 14 SAF and 21 TE-TM modes,
the CPU times was 11”,  51”, and  2’, 51”, respectively, being the overhead time for the SAF
generation almost negligible.
When applied to an array of printed slot, the synthetic functions can be defined in analytical form by
using an exact solution for the transmission line Green’s function [6], so to automatically account
for the magnetic current deformation around the feeding point. Fig. 3 shows the accuracy of the
analitical form of the Green’s function on an isolated, infinite slot in comparison with an accurate
MoM solution This approach, complemented with resonant SF, is applied in [7] for coplanar
waveguides fed slots.

Fig. 2 Array of 40X40 H-plane stepped horns.
Comparison between SAF method and  conventional
method  in calculating scattering parameters (from
[5])

Fig. 2  Real and imaginary parts of the normalized
magnetic current v(x) for an infinite slot
(w=0,030) printed on a ground plane between
silicon and air, excited by a delta gap with
dimension t=0,060. Comparison between closed
form Green’s function and and fine mesh MoM
solution applied to a very long slot (from [5])



3.TRUNCATED FLOQUET-WAVE MoM

Large and very large arrays are often treated as periodic; strictly speaking, this implies the
assumption that the array exhibits a geometrical periodicity and is fed with a linear progressive
phase. It is understood that most of the actual arrays are not perfectly periodic neither for the
excitation nor for the geometry, but in many practical applications, the deviation with respect to the
periodicity conditions is weak – especially when the scale of this deviation is compared to the period
of the underlying periodic lattice. Therefore, a large class of three-dimensional (3-D) finite phased
arrays can be treated as periodic. In these cases, the infinite array approximation is often used to

reduce the numerical complexity, and is known
to yield good results except near the array edges
and close to the scan-blindness condition. As an
alternative to perturbation approaches based on
the above, one can formulate the problem to find
explicitly the difference between the solution of
the infinite array, and the exact solution. Writing
the appropriate (exact) integral equation for this
difference (which is termed “fringe” integral
equation following a terminology of high-
frequency diffraction theories)  is one of the
starting points of the efficient technique
presented in [8]. The second ingredient of the
procedure is derived from the observation that
the unknown currents can be interpreted as
produced by the field diffracted at the array
edge, which is excited by the Floquet waves
pertinent to the infinite configuration. Following
this physical interpretation, the unknown in the
IE is efficiently represented by a very small
number of basis functions with domain on the
entire array aperture. In this framework, the
description of  the fine details associated to feed
points, edge element conditions, etc. are
attributed to the solution of the associated
infinite array, which has to be added to the

fringe solution.
The hypothesis of linear-phase excitation allows
a very simple and efficient solution of the
infinite array that is associated with the actual
one in terms of Floquet wave (FW) expansions.
These FWs are considered as producing
diffraction effects and relevant fringe current
perturbations at the edge of the array. The key
point of the presently described procedure is the
treatment of these unknown fringe currents in
terms of diffracted-ray global basis function
expansion. For a grounded slab problem, each
FW induces spherical and conical space wave
diffracted rays emanate from array corner and
edge, respectively; in addition, due to the
discontinuity at the boundary between the array
region to the bare slab region, surface plane-
and cylindrical-waves are excited at edges and
corners of the array, respectively. Uniform
asymptotic expressions of these contributions
are given in [9]. The FW-induced edge surface
wave dominate asymptotically the field far from
the edge, and constitutes the dominant basis
function to be included in the global fringe
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Fig.4. Magnitude of the active reflection coefficient for
an array of 19×19 open-ended waveguides, with 20°
E-plane tilted beam and gaussian amplitude excitation
(see inset). The waveguide dimensions are a=5714λ
b=0.254�λ ��� periodicities are dx=628λ, dy=0.290�λ
The ‘T(FW)²’ label denotes the use of globa
diffraction based basis functions. Dashed line denote
the conventional element by element approach. The
reference flat line is relevant to the solution for the
infinite array.

 

Fig.3 Finite rectangular periodic array of
conducting printed dipoles illuminated by an
incident plane wave.  Truncated FW results and
comparison with full-wave element by element
full-wave analysis for the current pattern.



current expansion.
 The coefficients associated to the unknown expansion (diffraction) functions are found by solving via
method of moments the pertinent integral equation (IE), derived from the IEs for the finite- and infinite
arrays, using as unknown function the difference between the exact solution of the finite array and that
of the associated infinite array.  The number of diffracted ray basis function which are involved in the
process varies from 9 to 16 for rectangular arrays (note that only the dominant FW and the first
evanescent are practically important in driving the diffraction process), the final size of the matrix to be
inverted is extraordinary small, and, more remarkable, independent on the array size. This obviously
imply a tremendous compression rate of the MoM matrix, with a negligible pre-processing time only
due to the solution of  the  infinite array.
The type of array elements that can be studied directly with the this method include slots, cavity-backed
apertures, dipoles in free space, and patches. Two examples of application of are shown here, that are
concerned with patch array [10] and open ended waveguide arrays [11]. The results in Fig. 3 refers to an
array of  25X25 dipoles printed on a grounded substrate (Geometrical and electrical data: dimensions of
the dipoles L=0.6 mm; W=0.1 mm; relative permittivity εr =10.2; thickness of substrate d=0,1905 mm;
periodicity dx=dy=0,8 mm, frequency f=7GHz).
Extension to weakly varying tapering was addressed in [8], and treated in [11] with reference to the case
of open-ended rectangular waveguide arrays (Fig.4). This extension uses local adiabatic modification of
the infinite array solution, enriched by the slope diffraction theories of truncated FW.

4. CONCLUSIONS

Two methods have been addressed here for the compression of the MoM matrix of large arrays
composed by planar elements. The first, not restricted to periodic arrays, is based on the definition of
local synthetic basis functions defined on sub-blocks of the structures, and generated by solving
problems of reduced dimensions. The second technique is applicable to periodic or quasi-periodic arrays
with slowly varying amplitude and linear phase excitation; it is based on the definition of global,
diffraction-based FW-induced basis functions which are independent on the array dimension. As typical
in high-frequency mechanisms, the diffraction based global basis functions are defined on the basis of
canonical problems, whose asymptotic treatment is the key point of the method.
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