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1 Introduction

The equations of electromagnetics can be simply and elegantly cast in the language of
differential geometry, more precisely in terms of differential forms or p-forms [1], [2], [3]. In
this geometrical setting, the fundamental conservation laws are not obscured by the details
of coordinate system dependent notation; and, the governing equations can be reformulated
in a more compact and clear way using well known differential operators of the exterior
algebra such as the exterior derivative, the wedge product, and the Hodge star operator. In
this context, a natural framework for the modeling of physical quantities is also provided.
For example, the electric potentials can be represented by 0-forms; electric and magnetic
fields by 1-forms; electric and magnetic fluxes by 2-forms; and, scalar charge density by
3-forms.

Our primary motivation for the development of FEMSTER was the need for a common fi-
nite element framework for electrostatics, magnetostatics, eddy current problems, Helmholtz
equation, time-dependent Maxwell equations, etc. Recently, Hiptmair [4], motivated by the
theory of exterior algebra of differential forms, presented a unified mathematical frame-
work for the construction of conforming finite element spaces. Remarkably, both H(curl)
and H(div) conforming finite element spaces and the definition of their degrees of free-
dom and interpolation operators can be derived within this framework. Given a physical
law expressed in the language of differential forms, it is quite straightforward to discretize
the problem using our class library. Our second motivation was the need for high-order
discretization which can reduce the mesh size, memory usage, and CPU time required to
achieve a prescribed error tolerance. This is particularly true for electrically large problems
due to numerical dispersion. The FEMSTER library contains implementations of finite
element basis functions of arbitrary order. These implementations include both uniform
and non-uniform interpolatory bases, the latter providing significantly improved numerical
stability as the order is increased.

2 PDE’s and exterior algebras

We begin with the generic boundary value problem stated in the language of differential
forms from [5]. We assume a 3-dimensional domain Ω with piecewise smooth boundary ∂Ω
partitioned into ΓD, ΓN , and ΓM . The problem statement is

du = (−1)pσ, dj = −Ψ + Φ, j = ?α σ, Ψ = ?γ u in Ω (1)
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TDu = f on ΓD, TN j = g on ΓN , TM j = (−1)p ?β TMu on ΓM . (2)

Here u is a (p − 1)-form, σ is a p-form, j is a (3 − p)-form, and both Ψ and Φ are
(3 − p + 1)-forms, where 1 ≤ p ≤ 3. The variable Φ is a source term. In (1) the operator d

is the exterior derivative which maps p-forms to (p + 1)-forms. In the boundary conditions
(2) the symbol T denotes the trace operator, where the trace of a p-form is an integral over
a p-dimensional manifold. The ? symbol denotes the Hodge-star operator, which converts
p-forms to (3 − p)-forms and typically involves material constitutive properties. Equations
(1)-(2) describe, in an abstract geometrical setting, a great variety or physical problems. To
be specific, when p = 1 we have Poisson-type problems, when p = 2 we have Helmholtz-type
problems, and when p = 3 we have Stokes-like problems. The variable σ can be eliminated
to yield the general second-order elliptic equation

(−1)pd ?α du = − ?γ u + Φ. (3)

A Galerkin finite element solution of the generic second-order equation (3) will require
bilinear forms. Using the exterior algebra, the bilinear forms required in the Galerkin finite
element method can be easily formulated from the general second-order equation (3) by
taking the wedge product with an (l − 1)-form v and integrating over the volume Ω and
using the standard integration-by-parts formula. This yields the two key symmetric bilinear
forms

a(u, v) =

∫
Ω

?α (du) ∧ dv, (4)

b(u, v) =

∫
Ω

?γ u ∧ v. (5)

3 FEMSTER : a finite element class library

The philosophy of the FEMSTER library is derived from the formulation of an abstract
conforming finite element method, see [6]. From the implementation point of view, such
a formulation is uniquely determined by the 4−tuple (Σ,P,A,Q) where: Σ is a geometric
element, P is a finite element space defined on Σ , A is the set of degrees of freedom defined
on Σ , and Q is a quadrature rule defined on Σ . At the highest level, the FEMSTER
library adheres closely to this well-established mathematical definition of a finite element.
The four main classes are an Element3D class, an IntRule3D class, a pForm class, and a
BilinearForm class.

The pForm class provides a common interface for all of the finite element basis functions.
The class hierarchy is illustrated in Figure 3. There are derived classes for 0-forms, 1-forms,
2-forms and 3-forms. There are further specializations for the geometric elements of type
Tetrahedron, Hexahedron, and Prism. Given the degree of the form and the element type, the
polynomial space P is uniquely defined. At the lowest level of the pForm class hierarchy are
the concrete implementations. The concrete implementations contain the specific degrees
of freedom A of the bases, for example our Silvester-Lagrange (SL) bases are similar to
the bases defined in [7] which use equidistant and shifted equidistant interpolation points.
These are suitable for low order approximations, i.e., k = 1 to 4. This particular choice of
interpolation points can produce badly conditioned mass and stiffness matrices when high
order approximations are used. For this reason we have implemented spectral classes that
use arbitrary sets of interpolation points, typically Gauss-Lobatto or Tchebyschev points.
As an example, Figure 2 shows the number of iterations required for a conjugate gradient
algorithm to solve the linear system (with an error tolerance of 10−12) arising from the
discretization of Poisson’s equation using a 0-form basis on a hexahedral mesh. In this
example we show the results for three different types of interpolatory bases. The other
key class is the BilinearForm class. Given an Element3D, an IntRule3D, and a pForm, the
BilinearForm class computes the bilinear forms (4) and (5). The discrete bilinear forms are
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local finite element mass and stiffness matrices, which can then be assembled to form linear
systems of equations. Using these classes, the FEMSTER library provides arbitrary order
discretizations of key differential operators in electromagnetics.

pFormBase

p0FormBase p1FormBase p2FormBase p3FormBase

Hex0FormBase

Pri0FormBase

Tet0FormBase

Hex1FormBase

Pri1FormBase

Tet1FormBase

Hex2FormBase

Pri2FormBase

Tet2FormBase

Hex3FormBase

Pri3FormBase

Tet3FormBase

Figure 1: p-Form class inheritance
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Figure 2: Iteration count for conjugate gradient solution of Poisson’s equation using three
different interpolatory bases, indicating improved stability of spectral degrees of freedom.

As an example of the accuracy that can be achieved using higher-order bases, we solve
the vector Helmholtz equation on a sequence of tetrahedral meshes for a problem with a
known, smooth solution. In Figure 3 we show the computed L2 error versus element size h

on a log− log scale for 1-form basis functions of degree 1 through 6. The slopes of the lines
(based on least-squares fit of the last three data points) are (0.98, 1.97, 2.97, 3.97, 4.97, 5.98)
indicating the optimal convergence. It is interesting to note that for this particular problem
using a 6th order basis on a 1440 element mesh yields a solution accurate to 10 significant
digits, where a comparable solution using a 1st order basis would require a mesh consisting
of billions of elements.

4 Concluding remarks

The FEMSTER finite element class library described in this paper is unique in several re-
spects. First,it is based upon the language of differential forms. This language provides a
unified description of a great variety of PDE’s, and thus leads us directly to a concise and
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Figure 3: Polynomial convergence of h-refined solutions of the vector Helmholtz equation
using finite element 1-Form basis functions of degree 1 through 6.

abstract interface to our finite element methods. This language also unifies the seemingly
disparate Lagrange, H(curl) and H(div) basis functions that are used in computational elec-
tromagnetics. Secondly, FEMSTER utilizes higher-order elements, bases, and integration
rules. Higher-order elements are important for accurate modeling of curved surfaces. The
use of higher-order basis functions reduces the demands put upon mesh generation, e.g. a bil-
lion element mesh is no longer required for a numerically converged solution. The FEMSTER
class library is ideally suited for researchers who wish to experiment with unstructured-grid,
higher-order solution of Poisson’s equation, the Helmholtz equation, Maxwell’s equations,
and related PDE’s that employ the standard gradient, curl, and divergence operators.
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