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Abstract

By means of some recent approaches it is possible to develop generalized FDTD
algorithms working in an explicit way on unstructured grids. The critical point of
these algorithms is the difficulty in the construction of the constitutive matrices, better
known as discrete hodge operators. In these paper we propose a novel technique for
the construction of the constitutive matrices in order to have some features that can
guarantee the stability and the consistency of the generalized FDTD algorithms.

1 Introduction
The study of the mathematical structure common to many physical theories[1] pro-
vides a new discrete mathematical model of the electromagnetic field theory. This new
model is based on the followings tools:
1)Two oriented space-time cell complexes and a relationship of duality between them.
A space cell complex, synonymous of three dimensional grid, is a structured collec-
tion of points, lines, surfaces and volumes whereas a time cell complex, synonymous
of one dimensional grid, is a structured collection of instants and intervals[2].
2)The global (integral) variables (Electric voltageV, Magnetic voltageF, Electric flux
Ψ, Magnetic fluxΦ, Electric currentI, Electric charge contentQc), in order to rep-
resent physical variables, and their physically coherent association with the oriented
space and time cells[1][2].
3)A discrete formulation of the electromagnetic laws by the global variables on the
cell complexes. In particular the discrete laws can be divided into two classes:
Field equations(topological equations). They can be enforced in a discrete form by
using appropriate incidence matrices. If we denote withG, C, D and G̃ = DT,
C̃ = CT, D̃ = −GT, the incidence matrices [1][3][5] related to the primal and dual
cell complexes respectively, which are the discrete counterparts of the differential op-
eratorsgradient, curl anddivergence, the topological equations can be expressed as
follows:
-Faraday-Neumann law: CVn+1/2 = −(Φn+1 −Φn)/τ
-Magnetic Gauss law: DΦn = 0
-Amp̀ere-Maxwell law: C̃F

n
= (Ψn+1/2 −Ψn−1/2)/τ + In

-Electric Gauss law: D̃Ψn+1/2 = Qc
n+1/2

whereVn+1/2, Φn, Fn, Ψn+1/2, In, Qc
n+1/2 are scalar arrays,τ is the time step

and the primesn en + 1/2 indicate the primal and the dual time instants respectively.
Constitutive relations. They can be enforced in a discrete form by using suitable
constitutive matrices. Let us denote withMε, Mεi, Mµ,Mν the constitutive matrices
that enter in the following algebraic constitutive relations:
Electric constitutive relations Ψn+1/2 = MεVn+1/2, Vn+1/2 = MεiΨn+1/2

Magnetic constitutive relations Φn = MµFn, Fn = MνΦn

The applications of the previous tools give rise to a new method (Cell MethodCM) for
solving electromagnetic static and dynamic problems both in frequency [3][4] and in
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time domain [2] on unstructured grids. In particular from the field equations and the
constitutive relations we can set up a generalized FDTD explicit algorithm as follows:

{
Fn = Fn−1 − τMνCVn−1/2

Vn+1/2 = Vn−1/2 + τMεi(CT Fn + In)
(1)

The main problem in a practical use of the algorithm (1) is the difficulty in the con-
struction of the constitutive matrices [5][6] under some constrains and desired features.
As a matter of fact the constitutive matrices must be: (1)Symmetric and (2)Positive
definite, in order to ensure stability of the numerical method[5][6], (3)Sparse, to save
memory and assure fast computations. Moreover the constitutive matrices must ensure
the (4)Consistency[6] and the (5)Accuracy of the numerical method.
In this paper we propose a general way to build the constitutive matrices in order to
satisfy the features(1)− (5). We will apply this technique here only to build the con-
stitutive matrices for the 2D cases with triangular grids, quadrilateral grids and square
grids with subgridding. The starting point will be the constitutive matrices built by the
Microcell Interpolation Scheme(MIS) [2].

2 A consistent symmetrization of the constitutive matrices of the MIS
In the MIS a generic constitutive matrixM, such asMν or Mεi i.e., is built by com-
position of local constitutive matricesMa located along the main diagonal ofM. In
the 2D cases each local constitutive matrixMa links physical variables related to the
geometrical elements inside and on the border of one surfaceSa. Since the dimension
of eachMa is equal to the number of edges ofSa thenM is sparse in general. In order
to meet the other features it is enough to deal with the local constitutive matricesMa.
Given a genericMa, built by the MIS, it is not symmetric in general, but it meets the
feature (5) both in frequency domain [3][4] and in time domain applications[2]. Our
goal is to find a new local constitutive matrixMaS such that:
(A) MaS is symmetric.
(B) MaS meets the feature about the consistency[6].
(C) MaS is as close as possible toMa in a square mean.
The request(C) is formulated for two reasons based on empirical assumptions. The
first is preserving the accuracy of the numerical method due to the original matrix
Ma. The second is satisfying the positive definiteness, sinceMa has most of the
larger values on the main diagonal. From the requests(A) and(B) we can set up a
linear system, whose unknownsx are the entries of the difference matrixMaS −Ma,
that we represent in the usual formAx = b. We have verified that the unknowns are
more than the equations in the linear systemAx = b and that at least a solutionx
exists in all the tested cases both in 2D and 3D. In order to satisfy the request(C) we
are interested in the minimum norm solution‖x‖2 that isx = A+b whereA+is the
Moore-Penrose pseudo inverse[7] of A. Finally it is possible to build the symmetric
local constitutive matrixMaS from the solutionx and the matrixMa.
In order to check if the request (C) leads to the positive definiteness of the constitutive
matrices, we have performed thousands of tests onMaS built for primal surfaces with
a number of edges from 3 to 6. The percentages of the cases whereMaS has not been
positive definite, due to cells with very bad shapes, have been very low (Table I).

edges 3 4 5 6
% 0.074 0.000 0.004 0.526

Table 1: Percentages of not positive definite matrices

3 Numerical results
In order to check the accuracy of CM with the new constitutive matrices it is enough to
perform tests on static problems or frequency domain problems. We have performed



two tests and in both of them we have compared the results using the old constitutive
matrices built by MIS and the new symmetric ones (Symmetrized MIS). In the first test
we have solved the Laplace equation on a square domain [0,1]x[0,1] with Dirichlet
boundary conditionϕ(x, y) = exp(x)cos(y). By CM the solution of the Laplace
equation:

GT MεGϕ = 0

has been calculated employing a primal triangular grid (Fig.1a) and a primal quadri-
lateral grid (Fig.1b). In the second test we have calculated the resonant frequencies of
a 2D circular cavity with radiusR = 0.5 by CM solving the following generalized
eigenvalues problem for TEz modes:

CT MνCV = ω2MεV

The eigenfrequencies have been calculated employing a triangular primal grid (Fig.2a),
a quadrilateral primal grid (Fig.2b) and a square grid with subgridding (Fig.3a). From
the results of the two tests e can verify that the new symmetric matrices ensure the
accuracy of CM.

4 CONCLUSION
In this paper we have proposed a novel technique for the construction of the constitu-
tive matrices with some features in order to guarantee the stability and the consistency
of some generalized FDTD algorithms. In the 2D cases analyzed in the paper the tech-
nique can guarantee a priori the sparsity and the symmetry of the constitutive matrices
and the consistency of the numerical method. Moreover some mumerical tests have
shown that most of the constitutive matrices are positive definite and that they lead to
accurate results. Further work is anyway necessary to check if there are some cases
(2D and 3D) where the technique fails and in particular how to modify the technique
for those few cases where the constitutive matrices are not definite positive.
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Figure 1: Mean square error vs mean cell size in the solution of the Laplace problem on a
square domain (a) using a triangular grid (b) using a quadrilateral grid.
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Figure 2: Relative error vs mean cell size in the calculus of the resonant frequency of a
circular cavity (a) using a triangular grid (b) using a quadrilateral grid.
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Figure 3: (a) Relative error vs number of unknowns in the calculus of the resonant fre-
quency of a circular cavity with a square grid and subgridding. (b) Primal square grid with
subgridding. (c) Primal quadrilateral grid.




