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1. Introduction

The Green function method is very effective in the analysis of doubly periodic
systems in the three-dimensional space (e.g. frequency selective surfaces [1]). In
important cases, it allows reducing the domain of the problem to a single unit cell with
a significant diminution of the computational effort. The “periodic Green function”

HΦ  is the dynamic potential from a two-dimensional array of point sources at the
lattice points 2211 aarI ii += , being 1a  and 2a  the primitive vectors [2, 3]. The phase-
shift between the point sources is determined by the wave vector k. The Green
function satisfies (assuming without loss of generality that the source point is the
origin):
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where β  is the wave number, and ( )21 , ii=I  is a generic double-index of integers.
The efficient computation of the periodic Green function can greatly reduce the
computation time in the analysis of doubly periodic structures. Different mathematical
representations for the Green function are known [2, 3]. To our best knowledge, only
Jordan’s representation [3] has exponential convergence (independently of the
observation point). However, Jordan’s representation requires the evaluation of the
complex error function in the complex plane, which is computationally demanding
and decisively worsens its global efficiency. Besides that, the evaluation of the error
function in the complex plane poses some difficulties of implementation.

In this paper, we propose a new representation for the Green function with exponential
convergence rate. The computational effort required to evaluate the new representation
is comparable to that of the Jordan’s et al representation [3]. However, our
representation is much easier to implement numerically. The idea is that the double-
array defined by the vectors 1a  and 2a  can be regarded as a sub-lattice of the array
defined by the vectors 1a , 2a  and a third arbitrary vector 3a . This concept is
illustrated in Fig.1. The potential from the triple-array of point sources is by definition
the “lattice Green function”. The lattice Green function is pseudo-periodic in 3
independent directions of space, in contrast with the periodic Green function, which is
pseudo-periodic in 2 directions. The lattice Green function, pΦ , satisfies:
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where 332211 aaarI iii ++= , and ( )321 ,, iii=I  is a generic triple-index of integers.
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As shown in previous work [4, 5] we can easily relate the potentials pΦ  and HΦ . The
idea is to write the potential pΦ  as a superimposition of the potentials from the
different sub-lattices (“layers”). The potential from each layer is written in terms of
the spectral representation of HΦ  [2]. It turns out that the sum of the layer potentials
corresponds to two geometrical series that can be summed in closed analytical form.
In this way, we obtain that [4, 5]:
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where 21cellA aa ×=  is the area of the transversal lattice, ( )21 , jj=J  is a double-
index of integers, 2211 bbkk J jj ++= , and 1b , 2b , and 3b  are the reciprocal lattice
primitive vectors, defined by mnmn ,2 δπ=.ba , n,m=1,2,3. We define //,Jk  as the
projection of Jk  onto the transversal lattice (defined by the primitive vectors 1a  and

2a ), and ⊥,Jk , ⊥3a  and ⊥r  as the projections of Jk , a3, and r onto a unit vector

normal to the transversal lattice, respectively. We put 22
, βγ −= //JJ k . In (3) the

sum with index “±” is a shorthand notation for the sum of two terms: one with “+”
sign and the other with “−” sign. We refer to (3) as the “spectral-like” representation
of the lattice Green function relative to the transversal lattice defined by 1a  and 2a .
The formula is valid only for ⊥⊥ < 3ar . Nevertheless, since the lattice Green function
is pseudo-periodic, it is possible to evaluate pΦ  in an arbitrary point of space by
reducing the observation point to the unit cell [4, 5]. In (3), it is easy to recognize that
the series associated to the first term in brackets is the spectral-representation of the
periodic Green function. Thus, we can write that:
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The above equation relates pΦ  and HΦ . Notice that the left-hand side is independent
of the primitive vector 3a . The second parcel in the right-hand side is a double series
with exponential convergence rate. Thus, provided we can evaluate pΦ  efficiently we
also can evaluate HΦ  efficiently. In the next section, we obtain a mixed-domain
representation for pΦ  with Gaussian convergence.
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transversal lattice)
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Fig. 1 The two-dimensional array of point sources defined by the primitive vectors a1
and a2, can be regarded as a sub-lattice of a three-dimensional array.
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2. The lattice Green function

The lattice Green function is utilized in solid state-physics for computing the
electronic structure of solids, in [6] for calculating the Coulomb interaction energy of a
lattice of ions, and in [4] for computing the band structure of artificial materials.
Spatial and spectral representations for the Green function are well known. These
representations converge slowly. In [6], Ewald derived a mixed-domain representation
for the Green function with Gaussian convergence rate. However, Ewald’s
representation requires computing the error function in the complex plane, which is
numerically efficient (we refer here parenthetically that Jordan’s representation for the
periodic Green function is derived directly from Ewald’s result). Next, we obtain a
new representation for the lattice Green function that does not suffer from that
shortcoming. To begin with, we note that the lattice Green function can be written as:
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where II rr −=ρ  and ( )ρgg =  is an arbitrary real function. The above expression is
obviously independent of g and corresponds to the spatial representation of the Green
function. Notice that ( ) rr πβ 4cos0 =Φ  is a fundamental solution of the
Helmholtz’s equation ( 0Φ  does not satisfy the Sommerfeld’s radiation condition; this
is irrelevant since pΦ , unlike HΦ , is not required to satisfy any particular boundary
condition at infinite). The idea to accelerate the convergence rate of (5) is applying the
Poisson summation formula to the first series in the right-hand side of (5). The
Poisson formula transforms a sum in the spatial domain into a sum in the spectral
domain. We have that:
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where 321cellV a.aa ×=  is the volume of the unit cell, 332211 bbbkk J jjj +++= ,

and ( )321 ,, jjj=J  is a generic triple-index. In the above f~  is the (triple) Fourier
transform of ( ) ( ) rrr πβ 4cosg . Since this function only depends on r , f~  can be
easily reduced to an integral over the positive real axis. A careful analysis shows that
function g must be chosen such that it is an odd function that converges exponentially
to unity as ρ approaches infinity, and such that f~  can be calculated in closed form.
An adequate choice for g is:
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In the above, “erf” is the error function, and the sum with index “±” is a shorthand
notation for the sum of two terms: one with “+” sign and the other with “−” sign. The
parameter E is an arbitrary positive number that defines the relative convergence rate
of the two series in (5). An appropriate choice for E is 3/1

cellVπ=E . Inserting (6)
in (5), we obtain a mixed-domain representation for the lattice Green function with
Gaussian convergence. Unlike the representation proposed in [6], our representation
only requires the evaluation of the error function in the real axis.



3. Results and Conclusions

We suggest the following strategy to compute the periodic Green function in an
arbitrary point r. If cellA5.0>⊥r , the periodic Green function can be efficiently
computed using the spectral representation [2], and thus no acceleration technique is
required. On the other hand, if cellA5.0<⊥r , the Green function is computed using
(4), with 3a  chosen in such a way that (4) converges as fast as possible. An adequate

choice is ⊥= ua ˆAcell3 , where ⊥û  is a unit vector normal to the transversal lattice
defined by 1a  and 2a . Since the periodic Green function is independent of ⊥k , we
can assume that the wave vector k is transversal. Within the considered hypothesis, (4)
is valid for cellA<⊥r . In (4), the lattice Green function is computed using the
mixed-domain representation derived in the previous section.

We compare the computation time
between (4) and Jordan’s et al formula
[3]. In the numerical simulation, we
admit that the point sources are arranged
into a square lattice in the x1ox2 plane.
The lattice constant is a. The
observation point is ( )a0,0,1.0=r  and
the wave vector is ( )0,0,5.0 aπ=k .
The wave number is ( )a6.02πβ = . We
implemented the numerical algorithms
in the commercial software application
MATHEMATICA. In Fig. 2, we depict
the relative error in percentage for both
representations (as a function of the
computation time). Note that the vertical axis is in logarithmic units. In spite of
Jordan’s representation being a double series and representation (4) being a triple
series, the computation time for the same accuracy is approximately the same. The
simulated results show that the efficiency of both representations is comparable.
However, as representation (4) is easier to implement numerically, we conclude that in
spite of involving the calculation of a triple series, it is of great relevance and may
contribute for the improvement of the existent electromagnetic solvers.
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Fig. 2 10log10(relative error in percentage) as
function of the computation time (normalized
to arbitrary units). Full line: our results.
Dashed Line: Jordan’s et al formula.
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