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I.   Introduction 

 

Over the past few decades, a number of analytical and numerical techniques have 
been developed for analyzing the infinite double periodic Frequency Selective Surfaces 
(FSSs). The techniques for analyzing multi-screen FSS composites can be divided into 
two general categories: those analyze the entire system simultaneously vs. those that 
employ the cascading approach based on the Generalized Scattering Matrix (GSM) 
technique. The former group of methods typically employ the moment method technique 
[1,2] to determine the unknown current distributions on the FSS screens in one step, 
albeit at the expense of increasing the number of unknowns approximately N-fold when 
there are N screens in the composite. The conventional cascading approach, mentioned 
above, provides a way to overcome these difficulties by employing the GSM technique 
[3]. In this method, the reflection and transmission properties of FSS screens are first 
described in terms of scattering matrices, and a linear system approach is subsequently 
applied to the cascaded screens to derive the scattering parameters for the composite. 
However, the size of the scattering matrices can become quite large for closely spaced 
FSSs, and an efficient iterative approach to overcome this problem has recently been 
introduced by Prakash and Mittra [4]. In all of these approaches, the unit cell of the FSS 
screen is subdivided into uniform cells by using roof-top basis functions to represent the 
induced current density on the metallic portions, which is solved by using Electric Field 
Integral Equation (EFIE). Quite often, a large portion of the unit cell would be occupied 
by metal, which in turn increases the number of unknowns significantly. An alternative to 
this problem is to use Magnetic Field Integral Equation (MFIE) and solve for the 
magnetic current density at the aperture portion, which requires reformulating the original 
problem. In this paper, we present a fast and efficient technique for analyzing infinite 
doubly periodic Frequency Selective Surfaces (FSSs) using the equivalence principle by 
solving the EFIE alone. The numerical efficiency of the proposed approach is illustrated 
with test cases comprising of multiple FSSs. 

 
 

II.  Theory 
 The scattering characteristics of infinite double periodic FSS structures are 
normally evaluated under transverse electric (TE) and/or transverse magnetic (TM) plane 
wave incidence. In the conventional approach, the unitcell is subdivided into M x N 
uniform cells, and the unknown current distribution on the metallic portions is expanded 
into roof-top basis functions. An electric field integral equation (EFIE) is formulated by 
enforcing the boundary conditions on the metallic portions, which is then solved to obtain 
the current expansion coefficients [1-4]. However, in many practical situations, a 
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significant portion of the unitcell constitutes of metal, leading to a large number of 
unknowns. This in turn slows down the convergence of the iterative solvers used for 
solving the MoM matrix equation [1]. In such a situation, it is desirable to reduce the 
CPU time as the EFIE has to be solved repeatedly for a wide range of frequency, and the 
incident angles. 
 
 We propose an approach to address the above mentioned problem by using 
equivalence principle. Here, we form a dual FSS screen by interchanging the metallic and 
free space regions of the original geometry as shown in Fig.1 in order to reduce the 
number of unknowns. We first solve the dual screen geometry and obtain its generalized 
scattering matrix. Next, by employing the equivalence principle, we generate the GSM of 
the original problem from that of the dual screen geometry. The GSM for the original and 
the dual screens is identified as ‘a’ and ‘b’, respectively. Let the generalized scattering 
matrix of the dual screen is given by 
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The GSM of the original screen is then generated from that of the dual screen by using 
equivalence principle. 
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where, the first and second superscript’s for each of the matrix entries denote the incident 
and scattered wave polarization’s, respectively. The above procedure is repeated for each 
of the FSS screens, and the individual GSM’s are then cascaded to obtain the overall 
scattering matrix. 
 

III.  Results 
 The theory presented in the previous section has been used to analyze a FSS 
structure comprising of two screens.. Each of the screens consists of a double square loop 
shown in Fig.1a, and the two screens are spaced 1cm apart from each other. A 64 x 64 
uniform discretization of the unit cell has been used to be able to represent the geometry 
accurately. For this case, the original problem shown in Fig.1a. has 6988 unknowns, 
while the one with dual screen shown in Fig.1b. involved just 860 unknowns. The FSS 
screen has been analyzed under plane wave incidence at θi = φi = 10, and its GSM is 
obtained. Next, the GSM of the original FSS is generated according to (2) and (3). In the 
present example, both the screens are identical and hence have the same GSM. The 
overall scattering matrix is then obtained by cascading the individual GSM’s of each of 
the FSS screens. The reflection and transmission coefficients of the original structure 
(Fig.1a) are presented in Fig.3 and 4, respectively. Also, the results obtained by directly 



analyzing the original structure by using the CG-FFT are also shown in the same figures 
for the sake of comparison. Close agreement is observed between the results of the 
present approach and that of the CG-FFT. The CPU time for the present approach for 
each frequency point is 30s, while that of the CG-FFT is 133s, on an IBM SP6000 
machine. 
 

IV. Conclusion 
 

In this paper, a computationally efficient approach using equivalence principle 
for the method of moments solution of the infinite doubly periodic frequency selective 
surfaces has been introduced. This approach involves forming a dual screen geometry 
with reduced metallization, which in turn leads to a reduction in the number of 
unknowns. Reformulation of the problem by using MFIE is not necessary, and the 
existing legacy codes employing the EFIE can easily be modified to accommodate the 
present approach. Numerical experiments reveal the accuracy and the computational 
advantage of this technique when compared to the conventional techniques. 
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(a) (b)

Fig.1. Unitcell of double square loop FSS screen. (a) original screen, and (b) dual
screen. The shaded area represents metallic portion. 
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Fig.2. Reflection coefficient of the cascaded FSS structure computed using 
the original screen and its dual. 

Fig.3. Transmission coefficient of the cascaded FSS structure computed 
using the original screen and its dual. 




