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1 Introduction

In many microwave applications, the computation of scattering parameters requires
reliable boundary conditions for the truncation of waveguide structures. The finite
element method [1] (FEM), often formulated in the frequency domain, is a popular
choice for this class of problems. Recently, Alimenti et al. [2] revised a formula-
tion of modal absorbing and matched modal source boundary conditions for the
finite-difference time-domain (FDTD) scheme. However, the basic FDTD scheme is
constructed from Cartesian grids and, consequently, waveguides with cross sections
which do not conform to the underlying structured grid will suffer from the staircase
approximation.
In this article, we introduce a new waveguide port algorithm for transient FEM

computations. The waveguide port algorithm is suitable for homogeneous wave-
guides of arbitrary cross section as well as similar problems in e.g. acoustics. As-
suming that a sufficient number of waveguide modes is used, the suggested algorithm
does not give any reflection from the waveguide port. This result holds for all fre-
quencies supported by the FEM discretization. We demonstrate the new waveguide
port algorithm by using it in conjunction with the stable FEM-FDTD hybrid [3, 4]
for the computation of the scattering parameter of a patch antenna fed by a coaxial
cable. The coaxial cable and a small volume around the feed are discretized by the
FEM and the remaining large volume (including the major part of the substrate) is
discretized by the FDTD scheme.

2 Formulation

We discretize the cross section of the waveguide by triangles and/or quadrilaterals.
These elements are extruded a distance h perpendicular to the plane of the cross
section and, thus, they form the bases to straight prisms and/or hexahedrons, re-
spectively. The volume elements are copied repeatedly along the waveguide axis,
which gives a periodic discretization of an infinitely long waveguide. For this setting,
we align the z-axis of a Cartesian coordinate system with the cylindrical axis of the
waveguide. The unit layer of finite elements for a coaxial cable is shown in Fig. 1(a).
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For this setup, we express the electric field in Maxwell’s equations ∇× µ−1
r ∇×

~E = (ω/c0)
2εr ~E in terms of the edge elements [1], i.e. ~E(~r ) =

∑∞
j=1Ej

~Nj(~r ). Here,
µr and εr can be functions of x and y. Next, we impose a Floquet representation with
an exp(−jkzz) dependence to connect the cells separated by integer multiples of h
in the z-direction. We employ Galerkin’s method and test with the edge elements
~Ni(~r ) associated with the unit layer of degrees of freedom shown in Fig. 1(b). This
procedure results in a generalized eigenvalue problem S(kz)E = (ω/c0)

2M(kz)E,
which can be solved for the dispersion relations ω = ω(kz) and the corresponding
eigenmodes E = E(kz). We number the waveguide modes with the indices m =
1, . . . ,M where M is the number of test edges. For waveguides with homogeneous
cross section, the modes E are constant with respect to kz and the stiffness matrix
S and mass matrix M are Hermitian. In the following, we limit the discussion to
the case when the permittivity and permeability are constants.
For a waveguide discretized by finite elements, we can construct the transmission

line equation by so-called macro elements ~Mj(~r;m) =
∑

i E
(m)
i

~Ni(~r ), where E
(m)
i

are the coefficients for the m-th mode computed from the eigenvalue problem above.
The basis function of the macro element ~Mj(~r;m) is non-zero for (j − 1)∆z < z <
(j + 1)∆z, where j is an integer.
We express the electric field in terms of standard edge elements ~Nj(~r ) for the

part of the computational domain where the solution has a three-dimensional depen-
dence. For the part of a waveguide which is treated as a one dimensional problem,
we expand the electric field for the m-th mode in terms of the macro elements
~Mj(~r;m). Thus, the total field is ~E(~r, t) =

∑

j Ej(t) ~Nj(~r )+
∑

jm E
(m)
j (t) ~Mj(~r;m).

Following Galerkin’s method, we test Maxwell’s equations by all ~Nj(~r ) and
~Mj(~r;m). This gives a system of coupled ordinary differential equations with respect
to time and we use the time-stepping scheme [4]:

K
∑

k=1

(

Sk

[

θkE
n+1 − (2θk − 1)E

n + θkE
n−1

]

+Mk

[

En+1 − 2En +En−1

(c0∆t)2

])

= 0, (1)

where we assign the implicitness parameter θk to each (standard or macro) element
k where k = 1, . . . ,K and K is the total number of elements. Here, Sk denotes
the contribution to S from element k, i.e. S =

∑K
k=1 Sk. The same partition is

applied to the mass matrix M. Unconditionally stable time-stepping is guaranteed
for θk ≥ 1/4 which is used for the tetrahedrons and pyramids. In the part of the
computational domain where we solve for the three-dimensional dependence of the
fields, we lump the stiffness- and mass-matrices for the cubes and choose θk = 0,
which allows explicit time-stepping. Similarly, the prisms and/or hexahedrons where
the fields are expressed as a sum of waveguide modes are lumped along the cylinder
axis of the waveguide and, again, θk = 0 allows explicit time-stepping. We terminate
the one dimensional transmission line for the m-th mode by the scheme proposed by
Alimenti et al. [2]. Stability of the entire scheme follows from the proof of stability
constructed by Rylander and Bondeson [4].

3 Numerical examples

We test the stable waveguide port algorithm for a patch antenna. The patch is
placed on a dielectric substrate (εr = 2.5) which is backed by a perfect electric



conductor (PEC) ground plane as shown in Fig. 2(a). The coaxial cable which feeds
the antenna is discretized as shown in Fig. 1 where the outer radius is 3 mm and the
inner radius is 0.48 mm. The dielectric of the coaxial cable is characterized by εr =
1.86. The length of the coaxial cable is 33 mm and we express the field in terms of
the fundamental TEM-mode for the part of the waveguide where amplitude of the
higher (evanescent) modes is negligeble.
The computed reflection coefficient S11 is shown in Fig. 2(b) by diamonds, circles,

and squares for three FDTD cell sizes hFDTD = 3.50 mm, 2.33 mm, and 1.75 mm, re-
spectively. (The unstructured finite element grid is refined similarly.) We model the
fundamental mode of operation for the antenna by a lumped series resonance circuit
with the impedance Za = R+jωL+(jωC)−1. The antenna impedance Za terminates
the coaxial cable transmission line with the characteristic impedance Z0 = 50 Ω
and the length d. We evaluate the reflection coefficient at the port from S11 =
(Za|z=d−Z0)/(Za|z=d+Z0), where Za|z=d = Z0(Za+jZ0 tan(βd))/(Z0+jZa tan(βd))
and β is the waveguide wavenumber. We use the three computed (complex) S11

around the resonance to determine R, L, C, and d. The models are shown in
Fig. 2(b) by dash-dotted, dashed, and solid lines for the three different FDTD cell
sizes hFDTD = 3.50 mm, 2.33 mm, and 1.75 mm, respectively. For comparison, we
include results computed by the transmission line method implemented in Quick-
Wave3d and it is shown by the solid line marked with triangles in Fig. 2(b). It
should be mentioned that these results are for finite cell sizes and some differences
are expected.
The lumped circuit values are shown in Tab. 1 for the different hFDTD. The

Q-values are computed from
√

γ2 + ω2
0/2γ, where ω0 =

√

1/LC − (R/2L)2 is the
resonant frequency and γ = −R/2L is the damping of the lumped resonance circuit.
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Figure 1: (a) Finite elements and (b) edges associated with a unit layer for a coaxial
cable.
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Figure 2: (a) The geometry of the antenna. (b) Reflection coefficient S11: Quick-
Wave3d - curve with triangles; and stable FEM-FDTD hybrid for different cell sizes
- the remaining curves and glyphs.

hFDTD [mm] R [Ω] L [nH] C [fF] d [mm] f0 [GHz] Q [-]

3.50 63.07 55.40 90.54 21.87 2.245 12.40
2.33 65.65 54.08 88.14 22.93 2.303 11.93
1.75 66.34 52.97 87.91 23.42 2.330 11.70

Table 1: Lumped circuit values together with the resonance frequency and the Q-
value of the antenna.
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