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1 Introduction

The perfectly matched layer (PML) is very popular and efficient for grid truncation
of open-region problems. The concept of PML was introduced by Bérenger [1]
together with a numerical implementation based on the finite-difference time-domain
(FDTD) scheme. However, the basic FDTD scheme is formulated on Cartesian
grids and in many cases an unnecessarily large free-space region must be discretized
between the PML and the object under investigation.

The PML has been formulated in cylindrical and spherical coordinate systems
by Teixeira and Chew [2] in order to reduce the free space region for objects that
conform well to circular cylinders and spheres. A more attractive setting would,
of course, not rely on a specific coordinate system. Recently, Teixeira et al. [3]
developed a conformal PML for the FDTD scheme. Here, we continue this effort by
presenting a new conformal PML formulation for the finite element method (FEM)
in the time domain. It is based on the anisotropic material [4] which has been used
for the time domain FEM by Jiao et al. [5].

In this paper, we present the 2D-version of the conformal PML, which is a special
case of our 3D-formulation. Furthermore, we consider only radar cross section (RCS)
computations based on the scattered field formulation and emphasize that our PML
is applicable to the total field formulation as well as radiating structures.

2 Formulation

We enclose the boundary Γ0 of the scatterer by a conformal and convex boundary
ΓPML as shown in Fig. 1(a). The region Ω0 (bounded by Γ0 and ΓPML) is then
discretized by triangles. A typical discretization for a circular cylinder is shown in
Fig. 1(b). Given the triangulation, we construct a grid of quadrilaterals by extruding
the line segments on ΓPML in the outward normal direction from Ω0.

Our conformal PML formulation for the FEM in the time domain is based on

∇× ~~µ−1r ∇× ~E − k20
~~εr ~E = ~0 (1)
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with appropriate boundary conditions. We use ~~µr = µr
~~Λ and ~~εr = εr

~~Λ, where

~~Λ = û
1

γu
û+ v̂γuv̂ + ŵγuŵ (2)

and γu = 1 + σ/jωε0. The conductivity σ controls the attenuation rate of the
electromagnetic fields in the û-direction, where û is defined at each node and aligned
with the edges which are normal to ΓPML. Similarly, v̂ = ẑ × û is defined at each
node and we fix ŵ = ẑ. The conductivity σ is set to zero for all triangles and
consequently Eq. (2) gives the unity tensor in Ω0, regardless the choice of û. We
use linear interpolation to evaluate û and v̂ inside each element.

The electric field is expanded in terms of linear edge elements and we use
Galerkin’s method to deduce the weak form of Eq. (1), where its time domain
counterpart is obtained by the Fourier transform. Similarly, the time dependence
of the electric field is expressed as a piecewise linear function and, again, we exploit
the Galerkin’s method. The Newmark scheme is used for the time integration and
we derive it by forming the linear combination of trapezoidal and exact integra-
tion applied to the temporal part of the weak form. The convolutions of the type
∫ t

0 ae
−b (t−τ)fj(τ)dτ are evaluated recursively by

ψj(~r, t) = e−b (t−t1)ψj(~r, t1) + ae−b t
∫ t

t1

ebτfj(τ)dτ, (3)

where a and b, in general, depend on ~r. In Eq. (3), fj(τ) is either Ej(τ) or ∂τEj(τ).

3 Numerical examples

In this paper, we present initial tests of the new PML formulation for scattering
from a perfect electric conductor (PEC) circular cylinder with the radius 0.5 m. A
typical discretization is shown in Fig. 1(b). The amplitude of the incident plane
wave is given from

Ei(t) = E0 exp

[

−

(

t− t0
d0

)2
]

sin [ω0(t− t0)] , (4)

which provides a localized pulse in both time and frequency domain. We impose the
boundary condition n̂× ~Es = −n̂× ~Ei on the surface Γ0 of the scatterer and solve
for the scattered field ~Es. The PML is backed by the boundary condition n̂× ~Es = ~0
and we use a quadratic profile σ(ρ) = σm(ρ/δ)

2, where ρ is the distance from ΓPML
and δ is the thickness of the PML. The RCS is computed from

σ2D(r̂c) = lim
rc→∞

2πrc
| ~Es|

2

| ~Ei|2
=

k

4| ~Ei|2

(

|Lz + ZNφ|
2 + |Lφ − ZNz|

2
)

, (5)

where the scattering amplitudes are given from

~N(r̂c) =

∮

ΓNTF

~Js(~rc
′)e+jkr̂c·~rc

′

dL′, and (6)

~L(r̂c) =

∮

ΓNTF

~Ms(~rc
′)e+jkr̂c·~rc

′

dL′. (7)



The boundary ΓNTF is indicated by the thick dashed line in Fig. 1(b). In Eq. (6)
and Eq. (7), we have ~Js = n̂× ~H and ~Ms = −n̂× ~E.

Figure 2 shows the RCS for the frequencies f = 0.4, 0.58, 0.75, and 0.92 GHz
given the solution from a single time domain computation. Here, we choose ΓNTF
and ΓPML to be (concentric) circles with the radii 0.6 m and 0.9 m, respectively.
The thickness δ of the PML region is 0.43 m and it is discretized (radially) by 16
quadrilaterals. We use a quadratic profile with σm∆t/ε0 = 0.35. The typical cell
size is h = 0.027 m which gives λ/h = 28.3, 19.5, 15.1, and 12.3 for the results shown
in Fig. 2.

We use the preconditioned conjugate gradient method to solve the linear system
of equations for each time step. The residual is reduced a factor 10−14 within roughly
10-15 iterations when we use an incomplete LU-decomposition with zero fill-in as a
preconditioner. This is a promising result which indicates that the new conformal
PML algorithm for the time domain FEM can yield efficient computations.

Empirically, our new conformal PML formulation for the time domain FEM
shows stable time stepping for all cases that we have analyzed so far. Other ways to
discretize the temporal part of the strong form have shown late time instabilities. We
are currently working toward a proof of stability for our conformal PML formulation.
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Figure 1: (a) Labeling of boundaries. (b) Typical discretization shown for a circular
cylinder.
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Figure 2: The computed RCS is shown by solid curves and the analytical RCS by
the dashed curves for (a) f = 0.40 GHz, (b) f = 0.58 GHz, (c) f = 0.75 GHz, and
(d) f = 0.92 GHz.




