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1 INTRODUCTION

Recent interests in the modeling of large-scale broadband electromagnetic problems have
made the use of high-order and spectral time-domain methods more attractive because
of their high efficiency and accuracy [1]–[5]. However, the analysis of stability of these
numerical methods is often complicated significantly because of the presence of complex
boundary conditions.

Recently, a penalty term is introduced by Hesthaven [2] [4] in spectral methods to impose
the boundary conditions weakly rather than strongly as is classically done, thus removes
many problems associated with the analysis of stable and accurate pseudospectral approxi-
mations. The methods are known as spectral penalty methods. The numerical stability and
spectral convergence for these schemes have been established in a rigorous manner.

In order to model electromagnetic waves in an unbounded physical domain by a spectral
method, a well-posed perfectly matched layer (PML) ABC [6] is used to absorb outgoing
waves in this paper. The grid employed consists of unstructured tetrahedral elements, thus
can easily model an arbitrary geometry. Furthermore, the penalty method enables an easy
treatment at the interfaces between adjacent elements compared with the finite-element
method.

2 Formulation

In order to model electromagnetic waves in an unbounded physical domain, the following
3D well-posed PML Maxwell’s equations [6] are used to develop spectral penalty methods.

∂(µH̃)
∂t

+∇× Ẽ = −AH̃−BH(1), (1)

∂(εẼ)
∂t

−∇× H̃ = −CẼ−DE(1) −GE(2) − J. (2)

where A, B, C, D, G are diagonal matrices defined as A = µP, B = µQ, C = σI +
εP, D = σP + εQ, G = σR. Here I denotes identity matrix and P = Diag[ωy + ωz −
ωx, ωx + ωz − ωy, ωx + ωy − ωz], Q = Diag[(ωx − ωy)(ωx − ωz), (ωy − ωx)(ωy − ωz), (ωz −
ωx)(ωz − ωy)], and R = Diag[ωyωz, ωxωz, ωxωy ]. Ẽ = E + ω̄E(1), H̃ = H + ω̄H(1),
ω̄ =Diag[ωx, ωy, ωz], and E(1), E(2), H(1) satisfy the following equations

∂E(1)

∂t
= Ẽ− ω̄E(1),

∂E(2)

∂t
= E(1),

∂H(1)

∂t
= H̃− ω̄H(1). (3)
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To simplify matters, let us express the above Maxwell’s euqations in a conservation form

∂q
∂t

+∇ · F (q) = S, (4)

where the state vector q, the flux F (q) = [F1(q), F2(q), F3(q)]T , and the source term S are
defined as follows

q =
[

εE
µH

]
, Fi(q) =

[ −ei ×H
ei ×E

]
, S =

[
SE

SH

]
=

[
−CẼ−DE(1) −GE(2) − J

−AH̃−BH(1)

]
.

Here ei denotes the three Cartesian unit vectors.

In order to construct a 3D spectral penalty method on an unstructured grid con-
sisting of a number of arbitrary tetrahedra, a standard tetrahedron I of vertices vI =
[−1,−1,−1]T ,vII = [1,−1,−1]T ,vIII = [−1, 1,−1]T and vIV = [−1,−1, 1]T is introduced
as a reference element. A standard tetrahedron I in coordinates ξ = (ξ, η, ζ) can be mapped
into an arbitrary tetrahedron D in Cartesian coordinates x = (x, y, z) by the linear map-
ping. An instance of such mapping is illustrated in Fig. 1. Within the standard tetrahedron
I, a set of nodal points {ξj} can be introduced to achieve spectral accuracy for interpolation
and spatial derivatives within the element (see [5] for details).
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Figure 1: Mapping between the physical tetrahedron and the standard tetrahedron including
the nodal sets for a 2nd-order interpolation.

By polynomial collocation methods, the unknown fields E and H in each tetrahedron of
the unstructured grids is assumed to be well approximated as

E(x, t) ≈
N∑

j=0

Ej(t)Lj(x), H(x, t) ≈
N∑

j=0

Hj(t)Lj(x), (5)

where Ej(t) = E(xj , t), Hj(t) = H(xj , t), and Lj(x) is the 3D multivariate Lagrange
interpolation polynomial of order n associated with ξj whose total number is given by
N = 1

6 (n + 1)(n + 2)(n + 3) to allow the polynomial basis to be complete.

Since simply performing time integration of (3) within each element does not ensure the
correct boundary conditions between adjacent elements, the appropriate jump conditions
must be taken into account. The change of the flux between elements can be obtained by
by Rankine-Hugonoit jump conditions to satisfy the following relations [7]

n̂ · [F ] =
{

(Z+ + Z−)−1n̂× (Z+[H]− n̂× [E])
(Y + + Y −)−1n̂× (−Y +[E]− n̂× [H]) , (6)
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where [E] = E+−E− and [H] = H+−H− measure the jumps in the field values across the
interface and superscripts ’+’ and ’−’ refer to the values from neighbor and local element,
respectively. Here parameters Z± denote the impedances and Y ± denote the conductances
of the medium. Eq. (6) will act as the penalizing boundary term in the following spectral
penalty method for Maxwell’s equations.

By the spectral penalty method, Maxwell’s equations are satisfied in the following
Galerkin-like way with the penalty term mentioned above

∫

D

(
∂q
∂t

+∇ · F − S
)

Li(x)dx =
∮

δD

Li(x)n̂ · [F ]dx. (7)

Substituting Eq.(5) into the above equation, we have an element-wise expression for the
electric field

dE
dt

= (M ε)−1 V ×H + (M ε)−1
MSE + (M ε)−1

F

(
n̂× Z+[H]− n̂× [E]

Z+ + Z−

)∣∣∣∣
δD

, (8)

and likewise for the magnetic field

dH
dt

= (Mµ)−1 V ×E + (M ε)−1
MSH − (Mµ)−1

F

(
n̂× Y +[E] + n̂× [H]

Y + + Y −

)∣∣∣∣
δD

, (9)

where M ε
ij = (Li(x), ε(x)Lj(x))D , Mµ

ij = (Li(x), µ(x)Lj(x))D , Mij = (Li(x), Lj(x))D ,

Vij = (Li(x),∇Lj(x))D , Fij = (Li(x), Ll(x))δD . Eqs.(8)-(9) and Eqs.(3) can be easily
integrated by time-advancing techniques such as Runge-Kutta methods.

For the special case of PEC walls, the field jumps are given by [E] = −2E−, [H] = 0, to
enforce the correct boundary conditions and the material parameters by Z+ = Z−. Besides
introducing attenuation coefficient into PMLs, PEC boundary conditions are enforced on
the outer boundary of the PMLs to truncate the computational domain.

3 Numerical Results

The radiation of an electric dipole source located at the center of a dielectric sphere in free
space is carefully studied. The sphere is of the radius of 0.3 m with relative permittivity
0.5 and relative permeability 2. The dipole is polarized along +z direction and has a
time-function of the first derivative of Blackman-Harris window function with the central
frequency 600 MHz. The free space is truncated by a cube of each side of length 0.4 m
which is covered by PMLs with thickness of 0.1m. After meshing the computational domain
with unstructured grid with tetrahedra, a 3rd-order spectral penalty method with the five-
step four-order low storage Runge-Kutta time-advancing technique is exploited to model
the electromagnetic radiation. The surface mesh of the sphere is shown in the right figure in
Fig. 2. The results shown as in the left figure in Fig. 2 illustrate that the numerical results
agree well with analytical solution and the PMLs works well in absorbing outgoing waves.

4 Conclusions

A spectral penalty method for the solution of 3D Maxwell’s equations with well-posed
PML has been developed to model the electromagnetic waves in unbounded physical region.
Numerical results of the radiation of an electric dipole source located at a sphere center show
an excellent agreement with analytical solution. Other numerical results also illustrate the
high accuracy and geometry flexibility of spectral penalty method. The well-posed PML
can be successfully introduced into the spectral penalty methods and works very well in
absorbing outgoing waves.
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Figure 2: Comparison of numerical results with analytical solution (a): Ez received
at (0.0m, 0.0m, 0.35m); (c): Ex received at (0.25m, 0.25m, 0.3m); (e): Ez received at
(0.25m, 0.25m, 0.3m); (b)(d)(f): their relative errors, respectively.
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