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1. INTRODUCTION

The increasing interest on metamaterials and frequency band-gap structures has been motivated by the large
number of recently discovered engineering applications in the field of microwave and antennas. Among the
great variety of technological solution, periodic surfaces printed in stratified dielectric media  are important
for their low-cost and realization simplicity. One of the main objective is the realization of artificial magnetic
surfaces [1], [2]. For patches or dipoles printed-on or embedded-in stratified structure, the actual purpose
may be concerned with the realization of compact antennas, and the suppression of surface waves to reduce
coupling and diffraction lobes. From the recent literature also emerge a different application which is
concerned with the excitation of leaky waves for the purposes of gain enhancement [3].
In order to control leaky wave excitation and surface wave band-gap,  it is necessary to have efficient model
of the dispersion properties in the irreducible Brillouin zone. The classical approach based on integral
equations leads to the numerical searching of complex zeros of MoM matrix determinant. This method is

often very complicated and strongly
sensitive to the initial guess, especially
when searching for leaky-modes. To
speed up the process, a method is
suggested here, which on one hand
constitutes itself a good approximation
of the solution, on the other hand may
serve for finding the initial guess to
start for pursuing the accurate solution.
In any case it gives a physically
appealing description of the physics.
Although the procedure has been
devised here for simple geometries, it
exhibits a potential applicability for any
structures composed by frequency
selective surfaces embedded in
stratified dielectric region.

2. FSS  HOMOGENEIZATION
AND SELECTION OF POLES AND
ZEROS

The approach is based on the model of
a free-standing frequency selective
surface (FSS) as a basic building block
of an equivalent network for describing
TE and TM transverse-resonance
network. As it is well known, the FSS
are realized by compactly interlaced
resonant planar elements which leads to
a homogenized surface impedance
within a certain frequency bandwidth.
A large bandwidth synthesis of this
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Fig 1 Reflection coefficient of an  FSS (gangbuster ”type 2” L= 10
mm, D= 2.51 mm, d= 0.571 mm, w= 0.25 mm.) versus frequency for
different scan angles  (a) E- plane (TM) and b) H-Plane (TE).
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surface through a dispersive (wavenumber
dependent) equivalent network is a feasible task
also with simple optimization tools. To
illustrate the concept, let us consider a simple
case of a FSS floating in free space and
illuminated by a plane wave. For the sake of
simplicity, we consider a “type 2” gangbuster
surface [4]. The properties of gangbusters
metamaterial have been devised in [5][6].  Fig
1a and 1b shows the TE and TM wide-band
behavior of the reflection coefficient, in the E-
and H-plane plane, respectively (note that E is
always parallel to the dipoles). The results have
been obtained by a spectral-domain based
Method of Moment (MoM) analysis and next
validated by the commercial software presented
in [7]. The corresponding equivalent z-
transmission line network is shown in the inset
of the same figure. An equivalent impedance
Zs(θ,ω) (yet undetermined), placed at z=0,
simulates in a broadband the response of the
FSS surface by account for the local reactive
energy associated to the Floquet modes. We
make here the assumption that the equivalent
impedance is purely reactive due to the
assumed absence of  losses in the metalization.
From the results of Fig. 1, we note that the
response of the FSS is apparently quite variable
with the angle of incidence. Actually, this is not
so. The characterization of the surface can be
described by using few parameters which

exhibits weak dispersion characteristics.
Indeed, we can neatly individuate poles and
zeros of the equivalent

impedance ( ) ( )ωωθ ,
~

, xss kZZ =  (we suppose

kx=kcosθ) because they are placed on the real
frequency axes being the impedance purely
reactive (note that the plots in Fig. 1 show the
reflection coefficient of the z-transmission line;
thus, before selecting poles and zeros, the
surface reactance must be analytically extracted
from the circuit). From the network theory, we
know that a reactance LC-function, can be
uniquely determined by the positions of poles
and zeros and from the behavior at ω=0 and
infinity. (This latter condition may be replaced
by the value assumed at a point where the

response is flat, which can be taken as coincident with the maximum of the investigated bandwidth). The
broad-band behavior of these poles (dashed line) and zeros (continuous line) is shown in Fig. 2 as a function
of the grazing wavenumber kx=kcosθ. It is apparent that poles and zeros has a moderate variation with kx in
the Brillouin zone. This suggests a simple strategy for the broad-band description of the FSS in the large kx-
ω domain with the use of a minimized number of parameters.
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Fig. 2 Position of zeros and poles of Zs  in the  f− kx plane (TM case
figure (a)) and in the f-ky plane (TE case figure (b)).
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Fig. 3 Synthesized θ-dependent L an C parameter for the TM
case (the circuit for the TE case includes only one paralle-
typel block for the same bandwidth)



3. POLE-ZERO INTERPOLATION AND NETWORK SYNTHESIS

The smooth variation of the pole and zero positions versus kx allows an interpolation of their position in the
kx-ω  plane with a first or second order polynomial of kx (see Fig. 2). This is quite general and it has been
verified also when the FSS is embedded in a stratification. By resorting to a pole-zero network synthesis, the
impedance function ( )ω,~

xs kZ can be simply obtained. An example of synthesized network is that shown in

Fig. 3, where the LC parameters are drawn as a function of θ.  Using those values, the original full-wave data
have been almost perfectly matched (results are not presented because indistinguishable from the full wave
data in the range of drawing of Fig.1). Obtaining the equivalent circuit from the pole-zero position is a
straightforward matter, and  requires a negligible numerical effort. Thus, the L-C parameters are a
consequence of a mathematical procedure, and it is difficult to attribute them a physical meaning. However,
a clever choice of the network topology, allows one to physically associate the L-C parameters to the quasi-
static capacitance and inductance of the dipoles. For instance, using the network depicted in Fig.3, the
dominant Cs and Ls series components (responsible of the zero-pole pairs at lower frequency) can be
interpreted as the gap capacitance between the two end-points of contiguous dipoles and the inductance of
the dipole, respectively. This also allows to intuitively predict the trend of the elements when moving the
FSS geometry.

4. DISPERSION EQUATION

The L-C network in Fig.3 does not give more information than the kx-dependent full-wave analysis, but
allows one to manage an analytical quantity into the dispersion equation. To this end consider a more
complicated structure, which consists of the same FSS considered before with a back ground plane at a

distance h. The outcome is a
structure which supports surface
and leaky-modes. The z-
transmission line description of
this structure comprises the same

( )ω,~
xs kZ impedance elaborated

before. In general, the presence of
the ground plane may modify the
equivalent impedance ( )ω,~

xs kZ

to be placed in the model; this
occurs when higher-order
(evanescent) Floquet modes are
not significantly attenuated at the

ground plane. Thus, the validity of the assumption can be easily verified again for comparison with the full-
wave analysis of the total structure (note that the direct synthesis of the grounded structure is more
complicated then the Zs synthesis).
The transverse resonant equation is now derived from the z-transmission line circuit in Fig. 4. When
searching the leaky wave solutions, we assume that the analytical expression of ( )ω,~

xs kZ  derived in the pre-

elaboration is continued analytically in the complex kx plane in the region Re(kx)<k with 2 2Im( ) 0xk k− > .

The analytical expression of the dispersion equation is next solved without relevant effort by a conjugate
gradient method. The same approach is also used for the slow-wave (surface-wave) region. In this case, the
polynomial approximations which leads  to the dispersivity of  Zs is extrapolated for values of kx greater that
k and less than  and less than π/dx (dx= periodicity in x), i..e, until the limit of the Brillouin zone.
We note that the approach used here can be applied for both TE and TM modes and for an arbitrary k-
direction in the x-y plane. Thus, one can reconstruct with few data arising from the full wave analysis, the
dispersion properties of the total Brillouin zone. An example of application is that shown in Fig. 5, where x-
propagating TE modes and y-propagating TM modes have been considered (since the particular dipole
geometry, the reverse polarizations are not dispersive because don’t feel the dipoles). It is interesting to note
that around 18,40 GHz, we individuate a leaky mode which has both real and imaginary part very close to
zero. This phenomenon occur at the same frequency for both the TE and TM case. When excited by a point
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Fig. 4 Transverse resonance equation via synthesised network for the grounded
FSS



source, this leaky wave provides a highly
directive, perfectly polarized, far-field
radiation. This phenomenon has been subject of
a dedicated investigation [8].

5. CONCLUSIONS

A method has been presented for the efficient
dispersion analysis (associated to both surface-
waves and leaky-waves) for printed periodic
FSS-type surfaces. The method has been tested
for a gangbuster FSS backed by a ground plane.
The method consists on a pre-processing
performed on the broadband reflection-
coefficient data obtained from a full-wave
analysis. After that, the FSS is characterized via
its resonances for few values of the incident
angle. This determines in a straightforward way
poles and zeros of an equivalent impedance,
simply synthesized by an L-C dispersive
circuit. Due to the weak dispersivity of poles
and zeros parameters, the L-C circuit can be
identified in a simple analytical form which,
after analytical continuation, is applied to
formulate the transverse resonance equation.
The process results much simpler and faster
than a full-wave solution for dispersion and
provides an accurate initial guess for the
iterative identification of the leaky and surface
wave solutions.
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Fig. 5 Dispersion diagram for leaky and surface wave solution.
(a) TM case; (b) TE case




