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Introduction

This contribution emphasizes the role of the voltage equation in the early development of
backscatter radar polarimetry as a bilinear form as pursued by E.M. Kennaugh and its relation
to the time reversal operation.

1. Historical remarks to Kennaugh’s dual space approach

At the middle of the last century the technological concept of radar and the physical concept
of optical polarimetry had established themselves as well proven engineering and scientific
research areas. However, the mixture of both concepts applied to the case of most interest for
military and civilian purposes, i.e. backscatter radar polarimetry, at first presented unexpected
theoretical and practical difficulties and misunderstandings that in part prevail up to the
present times and offers hidden pitfalls to the unwary. For a recent review of radar polarimetry
and its applications, see Boerner et al [2].

The reason for this uneasiness should be clear, however. Backscatter polarimetry can be
described correctly only using the concept of ’time inversion’ and the associated ’complex con-
jugation’ operation to the electromagnetic polarization descriptors (Jones or Stokes vectors).
This is obviously a nonlinear (antilinear) operator, well-known in quantum mechanics but quite
infamiliar to engineering sciences, see Lüneburg [3]. Related to to this new concept, there is
additionally a re-definition of the state of polarization describing plane electromagnetic waves
travelling in opposite directions. Every attempt to avoid the use of such a nonlinear operation
by passage to another coordinate system or introducing new conventions either turned out to
be inconsistent or failed at some later stage. In this respect the IEEE Standard Test Proce-
dures and Definitions of Terms for Antennas [4] are incomplete, inconsistent and contradictory
if not incorrect.

It was Professor Edward Morton Kennaugh (1922-1983) at the Ohio ElectroScience Labo-
ratory who suggested and extensively used a correct alternative way to describe characteristics
of radar polarimetry and to solve this conundrum. Kennaugh’s approach even avoids any
conflicts with the IEEE Standards [4]. Referring to these standards a transmitted wave ~E t

and a reflected (backscattered) wave ~E r represented by the same components in a common
linear coordinate system will differ not only in the direction of propagation but will actually
have polarization ellipses which are inclined at equal and opposite angles to the common
reference axis (refer to Kennaugh [5], Fig. 2). Being interested mainly in optimal character-
istic polarization states Kennaugh avoids to speak of the polarization of the reflected wave in
general but refers to the definition of antenna states for for transmission and reception in a
common linear polarization basis. If the vector height of an elliptically polarized antenna is
given by ~h (transmission), the elliptically polarized incident wave that is best receives would

be given by ~h∗, where the asterisk denotes complex conjugation. This operation describes the
time reversal. We may state, however, the unfortunate side effect that in the following decades
radar polarimetry sometimes appeared as a clever hodgepodge of wave theory and antenna
network performance (see Hubbert [6]), an opinion that to our believe and knowledge was
never supported by Kennaugh. He was a pragmatic mathematical engineer working in antenna
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theory and electrodynamics who had developed over the years a deeply rooted intuition how
practical problems in radar polarimetry could not only be formulated but effectively be solved
down to numerical results with advantageous illustrative representations. In particular we refer
to his M.Sc. Thesis [5]. Kennaugh’s work was later collected and systematically extended by
Huynen [7]. Huynen coined the term ’polarization fork’ on the Poincareé sphere for character-
izing optimal polarization states; a concept that earlier on had been discovered in Kennaugh’s
thesis [5].

2. Time reversal and the voltage equation

In radar backscattering the Jones vectors as polarization descriptors must be endowed with
a ’tag’, indicating the direction of propagation. Jones vectors with different tags belong to dif-
ferent (conjugate) linear propagation vector spaces. The passage from one of these spaces to the
other can be accomplished by time inversion and corresponds in a common linear polarization
basis to complex conjugation

~E+ =⇒ ~E− = ~E∗+ (nonlinear operation; common linear polarization basis).

The Jones vectors ~E− and ~E∗+ describe waves travelling in opposite directions but having by
definition the same state of polarization. This includes and supersedes the definition of states
of polarization of antennas for transmission and reception, see Sinclair [9], Rumsey [10] and
Graves [11].

Let W be a linear vector space over the field C. Then its dual space W ′ is the set of all
linear functionals from W → C; this is also a C-vector space. If {~w1, ~w2, · · · , ~wn} is a basis

for W , the elements { ~w′1, ~w′2, · · · , ~w′n} j W ′ satisfy the relations ~w′i(~wj) = δij for all i and
j. For a finite-dimensional linear vector space W and W ′ have the same dimension. In radar
polarimetry the role of the space that is dual to the incident Jones vector space is given by the
voltage equation or scalar radar brightness

V ≡ V (~hr,~ht) = (~hr, S~ht) ≡ ~hTr S~ht

where ~ht and ~hr are the (normalized) 2-component Jones vectors of the incident/transmit and
receiving antenna, respectively, and S is the (relative) Sinclair scattering matrix All quantities
are assumed to be expressed in a common linear polarization basis for the domain and the
range of the Sinclair matrix. Due to reciprocity the Sinclair backscatter matrices for point
targets are symmetrical and have five independent parameters, see Kennaugh [5], Mott [12].
Traditionally since the pioneering investigations by Kennaugh and others and later on by
Huynen the voltage equation has been the primary object for extracting information about the
scattering target rather than the electromagnetic fields themselves. But rather than treating
the voltage equation as a bilinear form by itself the traditional approach consists in splitting up
the voltage equation into two parts: the scattering effects of the target produced by an incident
wave and the effect of the receiver antenna. This point of view may have contributed to the
incorrect, unfortunate and misleading impression that radar polarimetry is a clever mixture
of electromagnetic scattering theory and radar network performance leading to formidable
misinterpretations in the literature, see Lüneburg [8]. The squared absolute value P = |V |2 is
known as power transfer, echoing are or ”radar brightness”.

Mathematically the voltage equation V for backscattering is a symmetric bilinear form, i.e.,
a functional B : WxW → C, that is linear in either variable if the other is fixed, cf Grove [13].
Here the Sinclair matrix S appears as the matrix representation of the bilinear voltage form
with respect to a linear polarization basis. The use of a particular basis leads to a particular
matrix representation 
B of the bilinear form B. This contribution will present some results of
the theory of bilinear forms and the associated quadratic forms (co-polar voltages)

Q(~w) ≡ B(~w, ~w) ⇐⇒ B(~v, ~w) =
1

2
[Q(~v + ~w)−Q(~v)−Q(~w)]

as far as they are relevant to radar polarimetry. Of special importance for quadratic forms are
the isotropic vectors and their corresponding subspaces that coincide with the co-polar nulls of



backscatter radar polarimetry and form a 2-dimensional hyperbolic plane. An unitary change
of polarization basis U implies an unitary congruence or unitary consimilarity transformation
of the matrix representation of B:


B → 
B′ = UT 
BU (unitary consimilarity).

This is the well-known transformation rule for the basis transformation of the backscatter
Sinclair matrix whose validity is often questioned since the correct interpretation in terms of
(directed) Jones vectors requires the acceptance of the time reversal operation, see Lüneburg [3].
This treansformation behavior for backscattering should be contrasted with that for forward
scattering (transmission) with a Jones matrix 
J replacing the Sinclair matrix 
S


J → 
J ′ = U† 
JU (unitary similarity)

where U†U = UU† = I. If the domain and range of the Sinclair matrix are expanded in
nonlinear basis vectors (for instance left/right circular polarization states) then also the basis
vectors themselves change under the time reversal operation; this situation is fully described
in Lüneburg [14].

The preceding formulation of backscatter radar polarimetry is completely equivalent to the
alternative formulation in terms of directed Jones vectors but avoids the explicit use of the time
reversal operation. Kennaugh was able to derive the so-called optimal states of polarization
which includes in particular co-polar maxima (cross-polar nulls), co-polar nulls, and cross-polar
maxima. These results are elementarily obtained by the method of Lagrange multiplies (to
take into account constraints) combined with parameter estimations. Working in the original
Jones vector space the derivation of these optimal states of polarization leads to problems of the
existence and uniqueness os solutions of coneigenvector/coneigenvalue equations (Kennaugh’s
pseudo eigenvalue equations) or the unitary condiagonalization of complex symmetric matrices.
This approach has been pursued in part by Huynen [7] and more recently by Lüneburg [3], see
also Boerner et al [2].

3. Conclusions and outlook

The passage from the linear vector space W to the dual linear vector space W ′ with the
corresponding linear form, i.e., the voltage equation V , used extensively by Kennaugh and
others, brought radar polarimetry in contact with branches of rather esoteric pure mathe-
matics, namely the geometry of the classical groups and geometric algebra, cf Grove [13] or
Taylor [15]. This theory was prospering already during the entire last century with numerous
interrelations to other fields of mathematics, like group theory, geometry and analytic algebra.
Many theorems that were considered as new in radar polarimetry actually have a long and
important history in their special mathematical context. For instance, the derivation of the co-
pol maxima (cross-pol nulls) by unitary condiagonalization goes back as far as to L. Autonne
[1] in 1915 and has been rediscovered several times later on, and the theory of co-pol nulls
or isotropic vectors is well known in geometric algebra and is related to Witt’s theorem [15].
Many new discoveries in geometric algebra (Tits buildings, flags and apartments, see Taylor
[15]) are waiting to be related to the theory of polarimetry as well as to ellipsometry in optics.

These remarks do not diminish the achievements and progresses made by Kennaugh in the
pioneering stages of radar polarimetry but honor him. He was the first to clear the undergrowth
that covered and surrounded early radar polarimetry and opened the door to other points of
view that involve interesting and by far not yet fully exploited branches of mathematics. This
refers to the application of Clifford algebra, quaternions, 2- and 4-component spinor theory
and in general to the geometrization and visulaization of polarimetric concepts. These aspects
will be covered at least in part by other contributions to this special session in honor of Edward
Morton Kennaugh.
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